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The Hamiltonian dynamics associated with classical, planar, Heiseitérgodels is investigated for two-
and three-dimensional lattices. In addition to the conventional signatures of phase transitions, here obtained
through time averages of thermodynamical observables in place of ensemble averages, qualitatively different
information is derived from the temperature dependence of Lyapunov exponents. A Riemannian geometriza-
tion of Newtonian dynamics suggests consideration of other observables of geometric meaning tightly related
to the largest Lyapunov exponent. The numerical computation of these observables—unusual in the study of
phase transitions—sheds light on the microscopic dynamical counterpart of thermodynamics, also pointing to
the existence of some major change in the geometry of the mechanical manifolds at the thermodynamical
transition. Through the microcanonical definition of the entropy, a relationship between thermodynamics and
the extrinsic geometry of the constant energy surface®f phase space can be naturally established. In this
framework, an approximate formula is worked out determining a highly nontrivial relationship between tem-
perature and topology & . From this it can be understood that the appearance of a phase transition must be
tightly related to a suitable major topology changeSgf. This contributes to the understanding of the origin
of phase transitions in the microcanonical ensemble.

PACS numbegps): 05.45-a, 05.20-y

[. INTRODUCTION tions, or seen as a possible link to concepts and methods
(those of nonlinear Hamiltonian dynamjdbat could deepen
The present paper deals with the study of the microscopiour insight about phase transitions. In fact, by construction,
Hamiltonian dynamical phenomenology associated withthe ergodic invariant measure of Monte Carlo stochastic dy-
thermodynamical phase transitions. This general subject isamics, commonly used in numerical statistical mechanics,
addressed in the special case of planar, classical Heisenbeggthe canonical Gibbs distribution, whereas there is no gen-
XY models in two and three spatial dimensions. A prelimi-eral result that guarantees the ergodicity and mixing of natu-
nary presentation of some of the results and ideas containedl (Hamiltoniarn) dynamics. Thus there is general interest in
in this paper has already been giver in. any contribution that helps in clarifying under what condi-
There are several reasons to tackle the Hamiltonian dytions equilibrium statistical mechanics correctly describes
namical counterpart of phase transitions. On the one handhe average properties of a large collection of particles,
we might wonder whether our knowledge of the alreadysafely replacing their microscopic dynamical description.
wide variety of dynamical properties of Hamiltonian systems  Actually, as already shown and confirmed by the results
can be further enriched by considering the dynamical signareported below, there are some intrinsically dynamical ob-
tures, if any, of phase transitions. On the other hand, & is servables that clearly signal the existence of a phase transi-
priori conceivable that theoretical investigation of the phaseion. Notably, Lyapunov exponents appear as sensitive mea-
transition phenomena could also benefit a direct investigatiosurements for phase transitions. They are also probes of a
of the natural microscopic dynamics. In fact, from a veryhidden geometry of the dynamics, because Lyapunov expo-
general point of view, we can argue that when microscopiments depend on the geometry of certain “mechanical mani-
dynamics was completely inaccessible to any kind of invesfolds” whose geodesic flows coincide with the natural mo-
tigation, statistical mechanics was invented just to replacéions. Therefore, a particular energy—or temperature—
dynamics. During recent decades, the advent of powerfullependence of the largest Lyapunov exponent at a phase
computers has made possible, to some extent, direct accesansition point also reflects some important change in the
to microscopic dynamics through the so called moleculageometry of the mechanical manifolds.
dynamical simulations of the statistical properties of “mac- As we shall discuss throughout the present paper, the to-
roscopic” systems. pology of these manifolds has also been discovered to play a
Molecular dynamics can be either considered as a mereslevant role in phase transition phenoméRaP).
alternative to Monte Carlo methods in practical computa- Another strong reason for interest in the Hamiltonian dy-
namical counterpart of PTP is related to the equivalence
problem of statistical ensembles. Hamiltonian dynamics has

*Electronic address: mcs@arcetri.astro.it its most natural and tight relationship with the microcanoni-
"Electronic address: cclementi@ucsd.edu cal ensemble. Now, the well known equivalence among all
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i.e., in the absence of phase transitions. This is not a diffito highlight the microscopic dynamical counterpart of phase
culty for statistical mechanics as it might seem at first sightransitions through the temperature dependence of the
[2]; rather, this is a very interesting and intriguing point.  Lyapunov exponents, also providing some physical interpre-
The inequivalence of canonical and microcanonical entation of abstract quantities involved in the geometric theory
sembles in the presence of a phase transition has been arf-chaos(in particular, for vorticity, Lyapunov exponents,
lytically shown for a particular model by Hertel and Thirring @nd sectional curvatures of configuration spaeed to dis-
[3]. It is mainly revealed by the appearance of negative valCuss the hypothesis that phase transition phenomena could be
ues of the specific heat and has been discussed by sevefiiginated by suitable changes in the topology of the constant
authors[4,5]. energy hypersurfaces of phase space, therefore hinting at a
The microcanonical description of phase transitions Seem@athemaﬂcal characterization of phase transitions in the mi-
also to offer many advantages in tackling first-order phasérocanonical ensemble.
transitions [6], and seems considerably less affected by The paper is organized as follows. Sections Il and Il are
finite-size scaling effects with respect to the canonical endevoted to the dynamical investigation of the 2D and)3D
semble descriptior[?]_ This nonequiva|ence prob|em' to- models, respectively. In Sec. IV the geometric description of
gether with certain advantages of the microcanonical enChaOS is ConSidered, with the analytic derivation of the tem-
semble, strengthens the interest in the HamiltoniarPerature dependence of the largest Lyapunov exponent, the
dynamical counterpart of PTP. Let us briefly mention thegeometric signatures of a second-order phase transition, and
existing contributions in the field. the topological hypothesis. Section V contains a presentation
Butera and CaravafB], considering arXY model in two of the relationship between the extrinsic geometry and topol-
dimensions, found that the temperature dependence of tHgY of the energy hypersurfaces of phase space and thermo-
largest Lyapunov exponent changes just near the criticlynamics; the results of some numeric computatior]s_ are also
temperatureT, of the Kosterlitz-Thouless phase transition. 'eported. Finally, Sec. VI is devoted to summarizing the
Other interesting aspects of the Hamiltonian dynamics of th@chlevements reported in the present paper and to discussing
XY model in two dimensions have been extensively considheir meaning.
ered in[9], where a very rich phenomenology is reported.
Recently, the behavior of Lyapunov exponents has been Il. 2D XY MODEL
studied in Hamiltonian dynamical systeng with long-
range interaction§10—12, (ii) describing either clusters of
particles or magnetic or gravitational models exhibiting
phase transitiongjii) in classical lattice field theories with
0O(1), O(2), andO(4) global symmetries in two and three
space dimensionigl3,14), (iv) in the XY model in two and
three space dimensiof$], and(v) in the “® transition” of
homopolymeric chaingl5]. The pattern of (T) close to the n
critical temperaturd . is model dependent. The behavior of H= 2
Lyapunov exponents near the transition point has been con- ihj=1
sidered also in the case of first-order phase transitions
[16,17. It is also worth mentioning the very intriguing result —COS(Qi,j+1—Qi,j)]> , (1)
of Ref.[18], where a glassy transition is accompanied by a
sharp jump ofx(T). ) i L
\(T) always detects a phase transition and, even if itd/hered;  are the angles with respect to a fixed direction on
pattern close to the critical temperattFe is model depen- the reference plane of thg system. In the usual definition of
dent, it can also be used as an order parameter—of dynamqje XY model _both the kinetic term and _the.constant term
cal origin—in the absence of a standard order paraniater 2JN_ are lacking; howeyer, their contribution does not
in the case of the mentione@l transition of homopolymers Modify the thermodynamic averagésecause they usually
and of the glassy transition in amorphous mateyialis deperN1d only on the configurational partition functicf
appears of great prospective interest also in the light of re=JIli=1dd; ex —BV(d)], the momenta being trivially inte-
cently developed analytical methods to compute Lyapuno@rable when the kinetic energy is quadratithus, as we
exponentgsee Sec. IV, tackle classical systems, the choice of a quadran_c kinetic
Among Hamiltonian models with long-range interactions energy term is natural because it corresponds3fl ;|S|?,
exhibiting phase transitions, the most extensively studied isvritten in terms of the momentg, ; canonically conjugated
the mean-fiel&KY model[11,19-2], whose equilibrium sta-  to the Lagrangian coordinates; . The constant termIN is
tistical mechanics is exactly described, in the thermodynamiintroduced to make the low energy expansion of &g.co-
limit, by mean-field theory11]. In this system, the theoreti- incident with the Hamiltonian of a system of weakly coupled
cally predicted temperature dependence of the largedtarmonic oscillators.

Lyapunov exponenhk displays nonanalytic behavior at the  The theory predicts for this model a Kosterlitz-Thouless
phase transition point. phase transition occurring at a critical temperature estimated
The aims of the present paper are to investigate the dyaroundT.~J. Many Monte Carlo simulations of this model
namical phenomenology of Kosterlitz-Thouless and secondhave been done in order to check the predictions of the
order phase transitions in the two- and three-dimensionaheory. Among them, we quote those of Tobochnik and

(2D and 3D classical Heisenber¥Y models, respectively; Chester[22] and of Gupta and Bailli¢23] which, on the

We considered a system of planar, classical “spirisi’
fact, rotatorg on a square lattice dl=nXn sites, and in-
teracting through the ferromagnetic interactio=
—2JS S (where|S|=1). The addition of a standard,
i.e., quadratic, kinetic energy term leads to the following
choice of the Hamiltonian:

p?.
i,
71+J[2—00$(qi+1,j_(1i,j)
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basis of accurate numerical analysis, confirmed the predic: ~ £=05 T=0.48 N=10x10  £=07 T-0.66 N-10x10 =1, T-09 N=10x10

T AR L AR AR AR T
tions of the theory and fixed the critical temperatureTat o5 E o5l e " o5 g
=0.89 0=1). g 1 2 -

The analysis of the present work is based on numerica® °§ . °§ I 05 A
integration of the equations of motion derived from Hamil- ~*°F ERR ERR A T
tonian(1). The numerical integration is performed by means — —L555 " RLrpr ey R pry ey
of a bilateral, third-order, symplectic algorithf24], and it M,0 M0 M,
is repeated at several values of the energy densitf/N it At Sl

rrre 1 prerrren

(E is the total energy of the system, which depends upon the  F A

choice of initial conditions While the Monte Carlo simula- = s 2, :
tions perform statistical averages in the canonical ensemble® = = 2
Hamiltonian dynamics has its statistical counterpart in ~ B ok
the microcanonical ensemble. Statistical averages are her 1125 " s™ IRy ey e prar
replaced by time averages of relevant observables. In this - 2’?(3 oo M0 M

€= =2. =10x

perspective, from the microcanonical definition of tempera- {2 T 1 g

ture 1M=9S/JE, whereSis the entropy, two definitions of 0s 3 05k E osE 3
temperature are availabl&i=(2/N)(K) (where K is the I ok * ] of T E
kinetic energy per degree of freedgm if S wsE T3 T E ] osb B
=In fTIY ,dgdp®(E—H(p,q)), where ®(-) is the Heavi- B L R B
side step function, andT=[(N/2—1)}(K }]7%, if S 10800t ! AR 1080 081
=In 1IN ,dgdp&(H(p,q) —E) [25]. T (or T) is numerically

determined by measuring the time average of the kinetic en- FIG. 1. The magnetization vectdd(t) computed along a tra-
ergy K per degree of freedonfor its inverse, ie., T jectory for the 2D XY model at different temperatures on a lattice

. - ~ . f N=10x10. Each point ts th M(t) at tai
=lim_..(2/N)(1/t) f5d7K(7) (and similarly forT). There is gme t ach point represents the vectd(t) at a certain

no appreciable difference in the outcomes of the computa-
tions of temperature according to these two definitions.

—_

M0

L My

This model has two integrable limits: coupled harmonic
oscillators and free rotators, at low and high temperatures,
respectively. HereafterT is used in units of the coupling
constant].

1. Order parameter For a lattice oN=10x 10 sites, Fig. 1 shows that at low
The order parameter for a system of planar “spins” temperatures‘l(<0.5),where the system is almost harmoni_c,
whose Hamiltonian is invariant under the action of the groupv.ve can opserve a persistent memory of th‘? total magnetiza-
0(2) is the bidimensional vector tion qssouated with the initial c_ond_mon, \_/vh|ch, on _the typi-
cal time scales of our numeric simulations §10nits of
proper time, looks almost frozen. By raising the temperature
M=(M,,M,) above a first thresholdly,=0.6, the total magnetization
Y vector—observed on the same time scale—starts rotating on

A. Dynamical analysis of thermodynamical observables

n

S < 3y,j)

i,j=1 i,j=1

n n the plane where it is confined. A further increase of the tem-
(2 COS(; 2 sing; ; |, perature induces a faster rotation of the magnetization vector
b=t b=t together with a slight reduction of its average modulus. At

(2)  temperatures slightly greater than 1, we observe that already

at N=10X10 a random variation of the direction and the

modulus of the vectoM (t) sets in. AtT>1.2, we observe a
which describes the mean spin orientation field. After thefast relaxation and, at high temperaturds=(10), a sort of
Mermin-Wagner theorem, we know that no symmetry-saturation of chaos.
breaking transition can occur in one- and two-dimensional At a first glance, the results reported in Fig. 1 could sug-
systems with a continuous symmetry and nearest-neighb@est the presence of a phase transition associated with the
interactions. This means that, at any nonvanishing temperdreaking of theO(2) symmetry. In fact, having in mind the
ture, the statistical average of the total magnetization vectocandau theory, the ring-shaped distribution of the instanta-
is necessarily zero in the thermodynamic limit. However, aneous magnetization shown by Fig. 1 is the typical signature
vanishing magnetization is not necessarily expected whenf anO(2) broken symmetry phase and the spotlike patterns
computed by means of Hamiltonian dynamics at fiften around zero are proper to the unbroken symmetry phase.
fact, statistical averages are equivalent to averages computed The apparent contradiction of these results with the
through suitable Markovian Monte Carlo dynamics tllat Mermin-Wagner theorem is resolved by checking whether
priori can reach any region of phase space, whereas in prirthe observed phenomenology is stable withThus, some
ciple a true ergodicity breaking is possible in the case ofimulations have been performed at larger value$l.oAt
differentiable dynamics. Also, an “effective” ergodicity any temperature, we found that the average modulus
breaking of differentiable dynamics is possible, when the(|M(t)|), of the vectorM(t), computed along the trajectory,
relaxation times of time averages to ensemble averages asgstematically decreases on increagiadHowever, for tem-
increasing very fast witiN [26]. peratures lower thafi,, the N dependence of the order pa-
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I 71— 2. Specific heat

By means of the recasting of a standard formula that re-
lates the average fluctuations of a generic observable com-
puted in canonical and microcanonical ensempig, and
by specializing it to the kinetic energy fluctuations, one ob-
tains a microcanonical estimate of the canonical specific
heat,

M, (©

c : de( Nd <K2>—<K>2)1
cve)=—0|1-—5———| ,
CV(T)=WV—> vie 2 2 (K)?
T=T(e),

-0.5 -

3

Y R B S whered is the number of degrees of freedom for each par-
- 05 ! ticle. Time averages of the kinetic energy fluctuations com-
puted at any given value of the energy densityyield

FIG. 2. The magnetization vectd (t) at the temperaturd Cu(M), accordipg to its p_arametric? _definition in E@).
=0.74, corresponding to the specific enekgy0.8 and computed From the microcanonical definition y,=JT(E)/JE of
in a time intervalAt=10°, with a random initial configuration, on the constant volume specific heat, a formula can be worked

lattices ofN=10x 10 (external pointsand ofN=200x 200 (inter-  OUt[25] that is exact aany value ofN [at variance with the
nal points. expressior(3)]. It reads

0
M, (®

rameter is very weak, whereas for temperatures greater than _Cyv -1

To, theN dependence of the order parameter is rather strong. VTN =[N=(N=2)(K}K" )] 4
In Fig. 2 two extreme casesNE10X10 and N=200

X 200) are shown forT=0.74. The systematic trend of

(IM(t)|) toward smaller values at increasihgis consistent dynamical simulations of finite systems.

With its expegted vanishing in the I|mINI—>oc._ _ .. The numerical simulations of the Hamiltonian dynamics
At T=1, Fig. 3 shows that, when the lattice dimension is ¢ ha 2p XY model—computed with both Eqs3) and
_grea_ter t_han_SE 50, _M (t) displays random variations both (4)—yield a cuspy pattern far,(T) peaked af =1 (Fig. 4).
in direction (in the interval[0,27]) and in modulus(be-  Thjs is in good agreement with the outcomes of canonical
tween zero and a value that is smaller at lanygr Monte Carlo simulations reported in Ref&2,23, where a
pronounced peak af,(T) was detected af=1.02.

and it is the natural expression to be used in Hamiltonian

e M o o O e

- ] o ]

o5 ] o5 7

g,k 1 5.t ;

= °f 1 = °f ]

-os 1 sk :
_1:....|.....|....|....: _1:....|....|....|....: FIG. 3. The magnetization vect® (t) at the

-1 05 o 05 1 -1 -05 o 0.5 1 temperatureT =1, corresponding to the energy

M0 M.® e=1.2, computed in a time intervaht=10°,

1 1 with a random initial configuration on lattices of
(@ N=10x10, (b N=50x50, (c) N=100

o5 E °) g o5 E 9 ] % 100, and(d) N=200x 200 sites, respectively.
S of e ;
s °F 1 = °f ]
-05 | . -05 | .
_ F | Lo Lo ] _ F ! | Lol ]
-1 —0.5 4] 0.5 1 -1 —-0.5 4] 0.5 1

M (0) M
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FIG. 4. Specific heat at constant volume computed by means of FIG. 5. Vorticity function[plotted in (a) linear scale andb)
Eg. (4) on a lattice ofN=10x10 (open circles and N=15X15  |ogarithmic scalécomputed at different temperatures for lattices of
(full triangles. Starlike squares refer to specific heat values com-N=10x 10 (open circles andN=40x 40 (full circles). The results
puted by means of Eq3) on a lattice ofN=10x10 . of the Monte Carlo simulations for a lattice hf=60x 60 (crosses

are from[22]. The dashed line represents the power &)

On varying the lattice dimensions, the peak height re—~ T,
mains constant, in agreement with the absence of a

symmetry-breaking phase transition. when the system changes its dynamical behavior, increasing
its chaoticity(see Sec. Il B At lower temperatures, vortices
3. Vorticity are less probable, because the formation of a vortex has a

Another thermodynamic observable that can be studied i§1inNimum energy cost. Below~ 1,l(t)he vortex density grows
the vorticity of the system. Let us briefly recall that if the St€€Ply with a power law(T)~T™. The growth of) then

angular differences of nearby “spins” are small, we can sup-SIoWs down, until saturation is reachedTat 10.

pose the existence of a continuum limit functiéfr) that
conveniently fits a given spatial configuration of the system.
Spin waves correspond to regular patterng/@f), whereas The values of the largest Lyapunov exponent have
the appearance of a singularity #fr) corresponds to a to- peen computed using the standard tangent dynamics equa-
pOlogical defeCt, or a vortex, in the “Spin” Configuration. tions [see Eqs(lo) and (A4)], and are reported in F|g 6.
When such a defect is present, along any closed @attat  Below T~0.6, the dynamical behavior is nearly the same as
contains the center of the defect, one has that of harmonic oscillators and the excitations of the system
are only spin waves. In the intervg0.0, 0.6, the observed

B. Lyapunov exponents and chaoticity

3§CV0(r)~dr=27rq, g=0,+1,+2,..., (5) N
e e
indicating the presence of a vortex whose intensity.isor E = X o8]
a lattice model with periodic boundary conditions, there is an 0 L J
equal number of vortices and antivorticés., vortices ro- 0.5 [T e
tating in opposite directions Thus, the vorticity of our =0 g e o * M
model can be defined as the mean total number of equal sign = '* £ x 06 ¢ 13
vortices per unit volume. In order to compute the vortidity i ¥ 0af O 1 3
as a function of temperature, we have averaged the number 10° o 0z b § 1 3
of positive vortices along the numerical phase space trajec- E P& 1
tories. On the latticer; is replaced by the multi-indexand L o O T ]
V,.6,=0s,—di. Then the number of elementary vortices is T
counted: the discretized version®fV #-dr=1 amounts to 10?107 10° 191: 10 10° 10*

one elementary vortex on a plaquette. Thuis obtained by
summing over all the plaquettes. Our results are in agree- [G. 6. The largest Lyapunov exponents computed on different
ment with the values obtained by Tobochnik and Chestefattice sizes:N=10x 10 (starred squarésN=20x 20 (open tri-
[22] by means of Monte Carlo simulations wi= 60X 60. angle3, N=40x40 (open stars N=50x50 (open squargs and

As shown in Fig. 5, on the 2010 lattice, the first vortex N=100x 100 (open circleg In the inset, symbols have the same
shows up atT~0.6 and on the 4R40 lattice atT~0.5, meaning.
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N =8 x8x8 L 0 X 10 x 10
os - 1 esf :
S of 1 5o+ :
- ] A 1
-05 — —0.5 -
L %"mfﬁ\gr,‘f e ] L ]
C | | ] C | | ] FIG. 7. The magnetization vectd (t), com-
T s T T o T es T T s T TTes puted at the temperaturé=1.7, on lattices of
M, (1) M, (1) different sizes. On increasing the lattice dimen-
, N = 12 x 12 X 12 L N =, 15 x 15 X, 15 sions, the longitudinal fluctuations decrease. The
¥ 1 ¥ ] time intervalAt=3.5x 10— 8% 10* is the same
C ] C ] for the four simulations.
05 - E 05 - 7
= of | Zof ]
o5l 1 st :
_1:| N _1:....|........|....:
-1 -0.5 [0] 0.5 1 -1 -0.5 &} 0.5 1
M, (® M, ©

temperature dependence,(T)~T2 is equivalent to the equilibrium configurations that cause the order parameter to
\1(€)~€? dependencésince at low temperatur&(e)e], bifurcate away from zero at some critical temperaffifend
already found—analytically and numerically—in the quasi-by a divergence of the specific heaj(T) at the samél .
harmonic regime of other systems and characteristic ofherefore, this is the obvious starting point for the Hamil-
weakly chaotic dynamici28]. Above T=0.6, vortices begin tonian dynamical approach.

to form and correspondingly the largest Lyapunov exponent

signals a “qualitative” change of the dynamics through a 1. Order parameter

steeper increase Vs At T=0.9, where the theory predicts a
Kosterlitz-Thouless phase transition;(T) displays an in-
flection point. Finally, at high temperatures, the power law
A (T)~T Y8is found.

Below a critical value of the temperature, the symmetry
breaking in a system invariant under the action of &)
group appears as the selection—by the average magnetiza-
tion vector of Eq(2)—of a preferred direction among all the
possible, energetically equivalent choices. On increasing the
1. 3D XY MODEL lattice dimension, the symmetry breaking is therefore char-

In order to extend the dynamical investigation to the Cas@cterlzed by a sort of simultaneous “freezing™ of the dlr_ec-
of second-order phase transitions, we have studied a systeﬁ‘ﬁn of the order parametédl and by the convergence of its
described by a Hamiltonian having at the same time the maif?°dulus to a nonzero value. _ o
characteristics of the 2D model and the differences necessary F19ure 7 shows that in the 3D lattice, B2, i.e., in the
for the appearance of a spontaneous symmetry breaking bg[oken-symmetr_y phas@s we shall see in the following
low a certain critical temperature. The model we have chosef'€ dynamical simulations yield a thinner spread of the lon-
is such that the spin rotation is constrained on a plane angitudinal fluctuations on increasirlg, that is,|M| oscillates
only the lattice dimension has been increased, in order 1§"d exhibits a trend to converge to a nonzero value, and that
elude the “no go” conditions of the Mermin-Wagner theo- the transverse fluctuations damp, "fixing” the direction of
rem. This is simply achieved by tackling a system defined oﬁhe oscillations. This direction depends on the initial condi-

a cubic lattice ofN=nXnXn sites and described by the tions. . . . .
Hamiltonian Moreover, the dynamical analysis provides us with better

detail than a simple distinction between regular and chaotic
n o? dynamics. In fact, it is possible to distinguish between three
_ Fijk _ N N different dynamical regimegFig. 8). At low temperatures,
H_i,j,;:l 5 I3 C0%Gisa) ki) T COLTi 1k up to T=0.8, one observes the persistency of the initial di-
rection and of an equilibrium value of the moduli| close
to 1. At 0.8<T<2.2, one observes transverse oscillations,
whose amplitude increases with temperatureTAt2.2, the
order parameter exhibits the features typical of an unbroken
symmetry phase. In fact, it displays fluctuations peaked at
zero, whose dispersion decreases by increasing the tempera-
The basic thermodynamical phenomenology of a secondure (bottom of Fig. 8 and, at a given temperature, by in-
order phase transition is characterized by the existence afreasing the lattice volumid=igs. 9a,b].

—0ij.k)— €O jkr1— ik ] (6)

A. Dynamical analysis of thermodynamical observables
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FIG. 8. The magnetization vectdd (t) com-
puted at different temperatures on a latticeNof
=10Xx10X 10 spins.
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We can give an estimate of the order parameter by evalu- 3. Vorticity

ating the average of the modulysM(t)[)=p(T). At T The definition of the vorticity in the 3D case is not a

<2.2, theN dependence is given mainly by the rotation of 5jmsje extension of the 2D case. Vortices are always defined
the vector, while the longitudinal oscillations are moderate, 5 plane and, if all the “spins” could freely move in the
as shown in Fig. 10. At temperatures abave 2.2, we ob-  tree-dimensional space, the concept of vortices would be
serve the squeezing p{(T) to a small value. meaningless. For the 3D plan@nisotropi¢ model consid-

The existence of a second-order phase transition can R§eq here. vortices can be defined and studied on two-
recognized by comparing the temperature behavior antlithe gimensional subspaces of the lattice. The variajes do

dependence of the thermodynamic observables computed fag contain any information about the position of the plane

the 2D and_3D'modeIs. Both systems exhipit the rptation ofvhere the reference direction to measure the angleg is
the magnetization vector and small fluctuations of its mOdU'assigned. Dynamics is completely independen’t' of this

lus when they are considered on small lattices. In the 2Q.hgice, which has no effect on the Hamiltonian. Moreover,
model the average modulus of the order parameter is thegs the Hamiltonian is symmetric with respect to the lattice
retically expected to vanish logarithmically wit, which 556 the three coordinate planes are equivalent. This equiva-
seems qualitatively compatible with the weldldependence  |once implies that vortices can exist contemporarily on three
shown in Fig. 2, whereas in the 3D model we observe ghogonal planes. Though the usual pictorial representation
stability with N of ([M[), suggesting the convergence 10 @ f 4 yortex can hardly be maintained, its mathematical defi-
nonzero value of the order parameter in the liMit-o also,  pition is the same as in the 2D lattice case. Hence, three
as shown in Fig. 7. y vorticity functions exist and their average values—at a given
T=2.2 is an approximate value of the critical temperatureiemperature—should not differ, which is actually confirmed
T. of the second-order phase transition. This value will beoy numerical simulations.
refined in Sec. Il B. No finite-size scaling analysis has been ™ e vorticity function vs temperature is plotted in Fig. 12.
performed for two different reason§) our main concern is  on a [attice of 16¢ 10 10 spins, the first vortex is observed
a qualitative phenomenological analysis of the Hamiltonianyt T—0 8. The growth of the average density of vortices is

dynamics of phase transitions rather than a very accurai@ary fast up to the critical temperature, above which satura-
quantitative analysigji) finite-size effects are much weaker o is reached.

in the microcanonical ensemble than in the canonical en-

semble[7].
B. Lyapunov exponents and symmetry-breaking
2. Specific heat phase transition
As in the 2D model, numerical simulations of the Hamil- A quantitative analysis of the dynamical chaoticity is pro-

tonian dynamics have been performed with both Egsand  vided by the temperature dependence of the largest
(4). The outcomes show a cusplike pattern of the specifit.yapunov exponent. Figure 13 shows the results of this com-
heat, whose peak makes possible a better determination pfitation. At low temperatures, in the limit of quasiharmonic
the critical temperature. By increasing the lattice dimensioroscillators, the scaling law is again found to bg(T)~ T2

up to N=15X15x 15, the cusp becomes more pronouncedand at high temperatures the scaling law is agej(T)

at variance with the case of the 2D model. Figure 11 shows-T~ %8 as in the 2D case. In the temperature range interme-
that this occurs at the temperaturg=2.17. diate betweem=0.8 andT.=2.17, there is a linear growth
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FIG. 10. The dynamical order parameter, defined as the average
4 of the modulugM(t)| along a trajectory, computed on lattices of
N=10x10x10 (full circles) andN= 15X 15X 15 (open circles

04

The dynamics is considered weakly chaotic when the value
N\, resulting from random dynamics is larger than the value
N\, resulting from differentiable dynamics. The transition
from weak to strong chaos is quite abrupt. Figure 14 shows
that the pattern of the largest Lyapunov exponent computed
by means of the random dynamics reproduces that of the true
] Lyapunov exponent at temperaturEs T, . This means that

. the setting in of strong thermodynamical disorder corre-

0.2 |

4 T T T T T T T

[ S
L

-0.4 -0.2 0. 0.2 0.4 F
M, (0 3 3 —

FIG. 9. The magnetization vectdn (t) computed at the tem- -
peratureT = 2.22 (slightly higher than the critical valgen lattices -
of () N=10x10x 10 and(b) N=15X 15X 15, respectively. The > F i .
time intervalAt=0.5x 10*—1.5x 10* is the same for both simula- © 2 - q -
tions. r

Lde)
()

of A1(T). At the critical temperature, the Lyapunov exponent P
exhibits an angular point. This makes a remarkable differ- L o & *C e
ence between this system undergoing a second-order phas L . |
transition and its 2D version, undergoing a Kosterlitz- L o .
Thouless transition. In fact, the analysis of the 2D model has - .
shown a mild transition between the different regimes of - 1
\,(T) (inset of Fig. 8, whereas in the 3D model this transi- 0 e
tion is sharpe(inset of Fig. 13. 10 10 10 10 10

We have also computed the temperature dependence o, T
the largest Lyapunov exponent of the Markovian random g\ 11 specific heat at constant volume for the 3D model,
processes that replace the true dynamics on the energy Sismputed by means of Edd) on lattices ofN=8x8x 8 (open
facesX.g (see the Appendjx The results are shown in Fig. triangle, N=10x 10x 10 (open circley N=12x12x12 (open
14. The dynamics is considered strongly chaotic in the temstarg, andN=15x 15x 15 (open squar@sFull circles refer to spe-
perature range where the pattemgT) are the same for cific heat values computed by means of Eg). on a lattice ofN
both random and differentiable dynamics, i.e., when differ-=10x 10x 10. The dashed line points out the critical temperature
entiable dynamics mimics, to some extent, a random proces¥,=2.17 at which the phase transition occurs.
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: * 3 FIG. 14. The largest Lyapunov exponents computed by means
r of the random dynamics algorith(full circles) are plotted in com-
0L ° 4 parison with those computed by means of the standard dynamics
E (open starsfor a lattice ofN=10x 10X 10.
T A folds are also the extrema of a functional, the arc length

10 107" 10° 10 10 10° = [ds, with ds’=g;;dqg'dql. Hence, a suitable choice of the

metric tensor allows for the identification of the arc length
FIG. 12. Vorticity function at different temperatures along a With eitherSy or Sy, and of the geodesics with the natural

dynamical trajectory on a lattice &f=10x 10X 10 sites. motions of the dynamical system. Starting frafy , the

“mechanical manifold” is the accessible configuration space

sponds to the setting in of strong dynamical chaos. Th&ndowed with the Jacobi metri29]

“window” of strong chaoticity starts afl. and ends afl

~10. The existence of a second transition from strong to (99)ij=[E= V(@) ]ayj, (7)

weak chaos is due to the existence, Tor©, of the second

integrable limit(of free rotatory whence chaos cannot re-

main strong at any>T,.

whereV(q) is the potential energy artdis the total energy.

A description of the extrema of Hamilton’s actia$y as
geodesics of a “mechanical manifold” can be obtained us-
ing Eisenhart's metrid30] on an enlarged configuration
space-time {q°=t,q%, ...,q"} plus one real coordinate
gV*1), whose arc length is

IV. GEOMETRY OF DYNAMICS
AND PHASE TRANSITIONS

Let us briefly recall that the geometrization of the dynam-
ics of N-degrees-of-freedom systems defined by a Lagrang-

lan L=K -V, |ln Wh:(_:h the kinetic energy is quadratic in the The manifold has a Lorentzian structure and the dynamical

velocities,K=3a;;q'q’, stems from the fact that the natural trajectories are those geodesics satisfying the conditign
motions are the extrema of the Hamiltonian action functional- c g, whereC is a positive constant. In the geometrical
Sw=JLdt, or of the Maupertuis actiofiy=2/K dt. Infact,  framework, the(in)stability of the trajectories is théin)sta-
the geodesics of Riemannian and pseudo-Riemannian mamijjity of the geodesics, and it is completely determined by

the curvature properties of the underlying manifold accord-

ds’=—2V({q})(dq®)?+a;dgdg +2dg°dgM . (8)

poom ing to the Jacobi equatidi29,31]
10° 3 © ©0 o 3
E OOQ@DO O o E V2§i i dqj kdqm
10k . NP d52+RjkmdS§ dS_O’ 9
> & o o0 0]
< 107 OO 06 E whose solutiorg, usually called the Jacobi or geodesic varia-
: 04 E R tion field, locally measures the distance between nearby geo-
Ll oz b 1 desics;V/ds stands for the covariant derivative along a geo-
e, ok ERE desic and R', are the components of the Riemann
[ e curvature tensor. Using the Eisenhart metdy, the relevant
e T T part of the Jacobi equatio) is [28]
' a2
FIG. 13. The largest Lyapunov exponents computed at different — +Rigé=0, i=1,...N (10)
temperatures for the 3D model. Numerical results are for lattices of dt?

N=10X 10X 10 (open circlesandN= 15X 15X 15 (open stars In

the inset, symbols have the same meaning. The dashed line poirtghere the only nonvanishing components of the curvature
out the temperaturg.~2.17 of the phase transition. The solid line tensor areRg;o; = 82V/(9qi&qj . Equation(10) is the tangent
shows the departure of;(T) from quadratic growth. dynamics equation, which is commonly used to measure
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Lyapunov exponents in standard Hamiltonian systems. Hav- A. Signatures of phase transitions from geometrization
ing recognized its geometric origin, Casetdtial. [28] de- of dynamics

vised a geometric reasoning to derive from Et0) an ef- In the geometric picture, chaos is mainly originated by the

fective scalar stability equation thaindependentlyof the 55 ametric instability activated by the fluctuating curvature
knowledge of dynamical trajectories, provides an averaggy; by geodesics, i.e., the fluctuations of ttesfective cur-
measure of their degree of instability. An intermediate St€R, 4t re are the source of the instability of the dynamics. On
in this derivation yields the other hand, as is witnessed by the derivation of(E?).
a2z and byfthhe equation :;self, a s;at;]sticalngchan(ijcal-like_gleaé-
- 2 i ment of the average degree of chaoticity is made possible by
FJFKR(I)&IJF&K( (1¢=0, (1) the geometrization of the dynamics. The relevant curvature
properties of the mechanical manifolds are computed, at the
where kg=Kg/N is the Ricci curvature along a geodesic formgl level, as statistical averages, like other thermody—
defined as KR:(l/UZ)RiJ_équj, with v2=g'q, and R; namic observables. Thus, we can expect_that some precise
:Rkikja and sSK@ is the local deviation of sectional curva- relationship may exist between geometric, dynamic, and

ture from its average valug8]. The sectional curvature is therquynamlc quantities. Moreover, t.h.'s |mp||es_that phase
. 2)_ 5 kel 1220512 transitions should correspond to specific effects in the geo-
defined aK?=Ry;, &'a'£q /| &[] all*.

SN ! . . metric observables.
Two simplifying assumptions are mad@) the ambient

ifold isal tisotronicie.. th s of th In the particular case of the 2RY model, the microca-
manitold 1Saimost ISotropi¢i.€., the components of I Cur- ;¢4 average kinetic energdK) and the average Ricci
vature tensor—which for an isotropic manifdiide., of con-

curvature (Kr) computed with the Eisenhart metric are
stant  curvature  are  Rijxm=Ko(Gik0jm— GimJjk). (Kr) P

ko=const—can be approximated bR;jn~K(t)(dikdjm linked by the equation
—0im0jx) along a generic geodesi(t); (ii) in the largeN N g2y
limit, the “effective curvature”k(t) can be modeled by a KR=< E 5 >
Gaussian and-correlated stochastic process. Hence, one de- =10

rives an effective stability equation, independent of the dy-
namics and in the form of a stochastic oscillator equation

N

[28], :23”21 (codqis1j;—0ij)+cogqijr1—0di;))
a2y =2(3—(V)), (14)
— Tlkot oxn(t) J¥=0, (12
dt so that

where 2« |&|2. The meank, and varianceo, of k(t) are (K) 1 (Kg)

given by ko=(Kg)/N and o2=((Kg—(Kg))?)/N, respec- H=Ne=(K)+(V)—>=€e-2J+5 1~ (19

tively, and the averages ) are geometric averages, i.e., in-
tegrals computed on the mechanical manifold. These aveSince the temperature is defined s 2(K)/N (with kg
ages are directly related to microcanonical averages, as wil-1) andd=1 (because each spin has only one rotational

be seen at the end of Sec. ¥(t) is a Gaussiad-correlated  degree of freedoim from Eg. (3) it follows that
random process of zero mean and unit variance.

The main source of instability of the solutions of E#j2), 1 1 oZIN -1
and therefore the main source of Hamiltonian chaos, is para- c\,=§ 5 (16)
metric resonance, which is activated by the variations of the T

Ricci curvature along the geodesics and which takes place , o .

also on positively curved manifold82]. The dynamical in- In the spgq|al case of theéeY gystems, it 1s p'053|blle to
stability can be enhanced if the geodesics encounter regiofi@k the specific heat and the Ricci curvature by inserting Eg.
of negative sectional curvatures, such that 6K(2<0, as 15) into the usual expression for the specific heat at constant

is evident from Eq(11). volume. Thus, one obtains the equation
In the case of the Eisenhart metric, it IKg=AV 1 a(Ke)(T)

=3)L,(?Viag?)  and  K®=Rgq¢ 8] €*= (VI Cy="— 537 . (17
~j=1\0"\ i . J v 2N JT

aq'aq)) € é1||€|%. The exponential growth rata of the

quantity ¢2+ ¢ of the solutions of Eq(12) is therefore an
estimate of the largest Lyapunov exponent that can be an
lytically computed. The final result reafi28]

The appearance of a peak in the specific heat function at the
ritical temperature has to correspond to a suitable tempera-
ture dependence of the Ricci curvature.

. 13 In the 3D model, the potential energy and the Ricci
_é_z_ko A—(Z 2, 6;4k0+4 4.2 curvature are proportional, according to N}{V)=3
T2 3h e 27 0k ’ — (1/2N)(KR).
(13 Another interesting point is the relation between a geo-

metric observable and the vorticity function in both models.
where 7= 7m\ko/[2\ko(Ko+ o) + o ]; in the limit o /ky  As already seen in previous sections, the vorticity function is
<1 one finds\* 2. a useful signature of the dynamical chaoticity of the system.
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From the geometrical point of view, the enhancement of the L
instability of the dynamics with respect to the parametric 4r
instability due to curvature fluctuations is linked to the prob-
ability of obtaining negative sectional curvatures along the
geodesicgas discussed for the 1KY model in Ref.[28]).

In fact, when vortices are present in the system, there will E;: i
surely be two neighboring spins with an orientation differ- © 2
ence greater tham/2, such that, ifi,j andi+1, are their C
coordinates on the lattice, it follows that 1F
T oL
Qi+1j~9i,j>5 —C0%0i+1~ 0 j)<O. (18 1o
T
The sectional curvature relative to the plane defined by the g\, 15, Time average of Ricci curvatufepen circles and its
velocity v along a geodesic and a generic veddrv is rms fluctuationgfull circles) at different temperatures computed for
a lattice of N=40% 40 sites. Solid lines are the analytic estimates
N 2 ij ekl obtained from a high temperature expansion.
) v g
K@= (19

ijki=1 09 ;90 || &%

w

N N
Zc=e 2PN B ilj_:[1 da; | ex;{ ,BJijz::l [cogdi+1;—Tij)

For the 2DXY model, it is

+COS(Qi,j+1_Qi,j)])

N
J o
K@=—0 > [cogq, ;=) (& H—¢1)?
EREE o g
o o ~g@ 2BIN do o

+COS{quH—Qi,j)(f'JH—5"')2]- (20) e f—wi,ljll dU,vjdl),'J ex;{ﬁJile [COiUI,J)
Thus, a large probability of having a negative value of the +cogv, ,)]) 22)
cosine of the difference among the directions of two close b

spins corresponds to a larger probability of obtaining nega-
tive values of the sectional curvatures along the geodesicsifter the introduction ofu; ;=0 1;—0;; andv; ;=q; 11
here for& the geodesic separation vector of E#0) is cho-  —q; ; as independent variables. In this way, some analytical
sen. estimates of the average Ricci curvatigéT) and of its rms
In the 3D model, the sectional curvature relative to thefluctuations o (T) have been obtained for the 2D model
plane defined by the velocity and a generic vectaf Lv is  (Fig. 15. For temperatures above the temperature of the
Kosterlitz-Thouless transition, these estimates are in agree-

3 N ment with the numerical computations orNa= 10X 10 lat-
() E [cOSQjs 1) ki &Lk giiky2 tice. It is confirmed that Hamiltonian dynamical simulations
€2 i.ik=1 . - on rather small lattices are already useful to predict, with a

. - good approximation, the thermodynamic limit behavior of
COLd 41k i (€7 H = €12 cod relevant observables. Moreover, the good quality of the high
—qi, (G kL gk 2] (21  temperature estimate gives further information: at the transi-
o tion temperature, the correlations among the different de-
) . . . y  grees of freedom are destroyed, confirming the strong chao-
and again 'the pro.bal.:)|I|.ty of finding neggt!ve va!ue;Kd? ticity of the dynamics.
along a trajectory is limited to the probability of finding vor-  tha same high temperature estimate&gfT) and o (T)

tices. have been performed for the 3D system. In Fig. 16, the nu-

The mean values of the geometric quantities entering Eqyerica| determination ofr (T) shows the appearance of a
(12) can be numerically computed by means of Monte Carlq,ery hronounced peak at the phase transition point, which is

simulations or by means of time averages along the dynamisoi” yredicted by the analytic estimate, whereas the average
cal trajectories. In 'fact, due'to the Iapk of an explicit exprespiq; curvatureko(T) is in agreement with the analytic val-
sion for the canonical partition function of the system, thes§,¢ of the high temperature estimate, computed by spin de-

averages are not analytically computable. For sufficiently, ., \jing above the critical temperature, as in the 2D model.
high temperatures, the potential energy becomes negligible

with respect to the kinetic energy, and each spin is free to
move independently from the others. Thus, in the limit of
high temperatures, one can estimate the configurational par- We have seen that the largest Lyapunov exponent is sen-
tition function ZC=I’IWHidqie*BV(Q) by means of the ex- sitive to the phase transition and at the same time we know
pression that it is also related to the average curvature properties of

B. Geometric observables and Lyapunov exponents
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T FIG. 17. Analytic Lyapunov exponents computed for the 2D

FIG. 16. Time average of Ricci curvatufepen trianglesand  model by means of Eq13) without correction(dots and incorpo-

its rms fluctuationgfull triangles computed at different tempera- rating the correction that accounts for the probability of obtaining
tures for a lattice ofN=10x10x10. Open circles and full dia- negative sectional curvaturéll square$ for a lattice size ofN
monds refer to a lattice size df=15x 15X 15. Solid lines are the =40x 40 are plotted in comparison with the numerical values of
analytic estimates in the limit of high temperatures. The dashed |In¢|g 6. The dashed lines are the asymptotic behaviors at high and
points out the temperatufe.=2.17 of the phase transition. low temperatures in the thermodynamic limit.

the “mechanical manifolds.” Thus, the geometric observ-of the Ricci curvaturéwhich underlies the derivation of Eq.
ablesko(T) ando(T) considered above can be used to es-(12)] underestimates the frequency of occurrence of negative
timate the Lyapunov exponents, as well as to detect theectional curvatures, which was already the case for the 1D
phase transition. XY model[28]. A correction procedure can be implemented
In principle, by means of Eq13), one can evaluate the py evaluating the probabilitfP(T) of obtaining a negative
largest Lyapunov exponent without any need of dynamicsyalue of the sectional curvature along a generic trajectory

but simply using global geometric quantities of the manifoldand then by operating the substitution
associated with the physical system. For 2D and 3®

models, fully analytic computations are possible only in the Kgr(T)
limiting cases of high and low temperatures. Microcanonical Kr(T)— 1+P(Ma’
averages oky and oy at arbitraryT have been numerically
computed through time averages. We can call this hybridihe parameter is a free parameter to be empirically esti-
method semianalytic. mated. Its value ranges from 100 to 200, without appreciable
In Fig. 17, the results of the semianalytic prediction of thedifferences in the final result. It contains the nontrivial infor-
Lyapunov exponents for the 2D model are plotted vs temimation that the actual tendency of the trajectories toward
perature and compared with the numerical outcomes of theegative sectional curvatures is more marked than predicted
tangent dynamics. As one can see, the prediction formulateldy the geometric model based &, .
on the basis of Eq.13) underestimates the numerical values The probabilityP(T) is estimated through the occurrence
given by the tangent dynamics. The semianalytic predictioralong a trajectory of negative values of the sum of the coef-
can be improved by observing that replacement of the sedicients that appear in the definition &% [Egs. (20) and
tional curvature fluctuatiodK (?) in Eq. (11) with a fraction  (21)],

(23

N
fﬁ ﬂ@)(— CO Q-+ 1)~ k1) —COL Oy 1 +1— Ok,1))eXH _,BV(Q)]kllll day,
P(T)~ :

; (24)

N
f wexp[—ﬁV(q)]klﬂl da,

averaged over all the sitégk,I e (1,... N); @ is the step  wherea is a free parameter. Actually, in the 2D model, the
function. Alternatively, owing to the already remarked rela-tyo corrections, one given by E3) with the P(T) of Eq

. - - . 2 L .
tion between vorticity and sectional f:urvatLlKé. ), P(T) (24), the other given by Eq25) with the vorticity function
can be replaced by the average density of vortices, in place of P(T), convey the same information. The semi-
analytic predictions of 1(T) with correction are reported in
Ke(T) (25  Fig. 17.

Kn(T)— ————,
(T) 1+aW(T) In the limits of high and low temperatures (T) can be
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I in some change of thpologyof the mechanical manifolds.
o0 e o A @0.g.. E In fact, in abstract mathematical models consisting of fami-
E 'Y oo g lies of surfaces undergoing a topology chaitige., a loss of

1o-1 o’ ] diffeomorphicity among thejn at some critical value of a
j parameter labeling the members of the family, we have ac-
< - & 1 tually observed the appearance of cuspsrpfat the transi-
E o tion point between two subfamilies of surfaces of different
C . ] topology, K being the Gauss curvature.
107 | 4 Actually, for the mean-fielcKY model, where botlar, (T)
: . ] and\,(T) have theoretically been shown to lose analyticity
Lot [ T at the phase transition point, direct evidence of a “special”
10 107 107 10t 10 10° 104 change of the topology of equipotential hypersurfaces of
T configuration space has been giJ@3]. Other indirect and
FIG. 18. Analytic Lyapunov exponents computed for the 3D direct evidence of the actual involvement of topology in the
model by means of Eq13) without correctiondots and incorpo- ~ deep origin of phase transitions has recently been given
rating the correction that accounts for the probability of obtaining[34,35 for the latticee® model. In the following section we
negative sectional curvaturésill circles) are plotted in comparison consider the extension of this topological point of view about
with the numerical values of Fig. 13. The dashed lines are thgohase transitions from equipotential hypersurfaces of con-
asymptotic behaviors at high and low temperatures in the thermofiguration space to constant energy hypersurfaces of phase
dynamic limit. space.

given the analytic forms.;(T)~T~ 6 at high temperature, V. PHASE SPACE GEOMETRY AND THERMODYNAMICS

n T)~T? at low temperature. In the former h . . .
and A(T) at low temperature the former case, the In the preceding section we used some elements of intrin-

8ic differential geometry of submanifolds of configuration
Space to describe the average degree of dynamical instability

deviation of \1(T) from quasiharmonic scaling, starting at
T=0.6 and already observed to correspond to the ap|oearang<13‘e‘f"sured by the largest ITyapunov e_xpom_elntthe present
Séction we are interested in the relationship between the ex-

of vortices, finds here a simple explanation through the ge: """
ometry of dynamics: vortices are associated with negatiV(I.‘rInSIC geometry O.f the constant energy hypersurfakes
sectional curvatures, enhancing chaos. and thermodynamics. . :

On increasing the spatial dimension of the system, it be- Hereafter, phase space is considered as an even-

. . 2N
comes more and more difficult to accurately estimate théilmensmnal subse’ of R™ and the hypersurfaceZe

o o . : = e PN RIH(P1, -« PN,O1s - -« 50N)
probability of obtaining negative sectional curvatures. The_{(pl P, d1 An) € 1 N2
assumption that the occurrence of negative values of the co- E} are manifolds that can be equipped with the standard

sine of the difference between the directions of two nearby'cmannian metric mduced_froiﬁﬁz'\‘. If, for example, asur
spins is nearly equal t®(T) is less effective in the 3D faccie '15 paraLme:trlcaIIy defined through.the. equations
model than in the 2D one. Again, the vorticity function can ~ X (2> - 27, 1=1,....&, then the metrig;; inducedon
be assumed as an estimatePgT) [Eq. (25)]. The quality of th? ngface is given byg;(z’,....2)=2524(x"
the results has a weak dependence upon the parameter Qz)(ax /162'). The gezo'?esm flow'assouated'wnh the me}nc
The correction remains good, with belonging to a broad induced onZe from R“Y has nothing to do with the Hamil-
interval of values(100—200. In the limits of high and low to'nlan flqw that pelongs tQe. Neverthgless, an intrinsic
temperatures, the model predicts correctly the same scalirfgi€émannian metrigs of phase spack exists, such 'ghat the
laws as in the 2D system. geod_esm_ flow ofgs, _restncted toX g, c0|nc_|d_es with the

In Fig. 18 the semianalytic predictions for the Lyapunov Hamiltonian flow @s_ is thg so called Sasaki lift to. the tgn-
exponents, with and without correction, are plotted vs temgent bundle of configuration space of the Jacobi megic
perature together with the numerical results of the tangerfhat we mentioned in Sec. v
dynamics. It is noticeable that the prediction of Efd) is The link between extrinsic geometry &f¢ and thermo-
able to give the correct asymptotic behavior of the Lyapuno\gynamlcs is established through the microcanonical defini-
exponents at low temperatures also, the most difficult part t§on of entropy,
obtain by means of dynamical simulations.

— St [ 2 =
C. A topological hypothesis B sl VH]

We saw in Fig. 16 that a sharp peak of the Ricci curvature
fluctuationso (T) is found for the 3D model in correspon-
dence with the second-order phase transition, whereas, fovhere do=vdet(g)dx;- - -dx,n_4 iS the invariant volume
the 2D model g (T) appears regular and in agreement with element of> cCR2N, g is the metric induced fron2N, and
the theoretically predicted smooth pattern. On the basis ofq, ... Xyy_1 are the coordinates oBg .
heuristic arguments, in Ref§l,14] we suggested that the Let us briefly recall some necessary definitions and con-
peak ofo, observed for the 3IXY model, as well as for 2D cepts that are needed in the study of hypersurfaces of Euclid-
and 3D scalar and vector lattieg® models, might originate ean spaces.



5184 CERRUTI-SOLA, CLEMENTI, AND PETTINI PRE 61

A standard way to investigate the geometry of a hypersur- 1 1 dQ,(E)
face 2™ is to study the way in which it curves around in -0 (E) dE
R™*1: this is measured by the way the normal direction g
chang;as r?s we mfovr(]e from polindt to point on the surfacze. The 1 f do ) M3 AH
rate of change of the normal directiow at a pointx e = - >
is described by the shape operator [(v)= 0, )5 VHI TIVH] IVH]

—V,N=—=(VN¢-v,...,VN;1-V), wherev is a tangent 1 J do  M?
(31

vector atx and V, is the directional derivative of the unit =] =,
normalN. As L, is an operator of the tangent space &tto Q, ) s [IVH[ [VH]
itself, there are m independent eigenvalues[36] o )
k1(X), - . . km(X), which are called the principal curvatures Where M7=V -(VH/[VH|) is directly proportional to the
of 3 at x. Their product is theGauss-Kronecker curvature Mean curvaturé27). In the last term of Eq(31) we have
Kg(X)=IIM , k;(x) =det(L,), and their sum is the so-called neglecteq a contribution that ve_1n|shes@(§l/N). Equation
mean curvature M,(x)=(1/mM)=™ k;(x). The quadratic (31) provides the fundamental link between extrinsic geom-

form L (v)-v, associated with the shape operator at a poinf!TY @nd thermodynamicg38]. In fact, the microcanonical

x, is called the second fundamental formXfat x. average oM1/|VH||, which is a quantity tightly related to
It can be showr{31] that the mean curvature of the en- the mean curvature df¢, gives the inverse of the tempera-
ergy hypersurfaces is given by ture, whence other important thermodynamic observables
can be derived. For example, the constant volume specific
heat
M B 1 v VH(X) )
Cy JE '
where VH(X)/|VH(x)| is the unit normal toSg at a  using Eq.(29), yields
given point x=(p{,...,Pn.01,---0n), and V .
=(aldp,, ...,0ldqy), whence we get the explicit expres- _ [9S\? %S 23
sion v="13e) | 5e2) (33
becoming at larg&\
(2N—1)M,= ! N+ il + ! ’ ’
o IvH] T \ag?) | |VH|? . < M >2 1 d f do ( M +R(E))
v "\ ol T ol Tualir
Is 2+2( 2V )(ﬂ)(ﬂ) IVHI/ ol @, dEJ s VAT | TVH]
i P 7\ 9999/ \ aq;) \ aq;/ |’ < M3 >2 -1 34
(28) IVHI ]

N S ) ~ where the subscript MC stands for microcanonical average,
wherei,j are multi-indices according to the number of spatialand R(E) stands for the quantities of ord€(1/N) ne-

dimensions. . glected in the last term of Eq29) (a priori, its derivative
‘The link between geometry and physics stems from thgan be non-negligible and has to be taken into acdount
microcanonical definition of the temperature, Equation(34) highlights a more elaborate link between ge-

ometry and thermodynamics: the specific heat depends upon
the microcanonical average 83/ VH| and upon the en-

EI (9_82 1 dQ,E) (29) ergy variation rate of the surface integral of this quantity.

T o Q(E) dE ’ Remarkably, the relationship between curvature proper-
ties of the constant energy surfaces and thermodynamic
observables given by Eq&9) and(34) can be extended to

where we used EQq(26) with kg=1, »=2N—1, and embrace also a deeper and very interesting relationship be-
Q,(E)=[s_da/[|[VH]||. From the formuld37] tween the thermodynamics ammpologyof the constant en-
ergy surfaces. Such a relationship can be discovered through
reasoning which, though approximate, is highly nontrivial,
dk for it makes use of a deep theorem due to Chern and Lashof
(J ada-)(E’)=J AX(a)do,
E E’

dER (B0 [39]. As|VH|={=p2+[V;V(q)]?}*2is a positive quantity
increasing with the energy, we can write

where « is an integrable function and is the operator l idﬂvzif do  Mj =D(E)if doM
A(@)=(V/||[VHI)-(a-VH/|VH]), it is possible to work T Q, dE  Q,Js [VH| [VH] Q,)s, v
out the result (35
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where we have introduced the factor functid(E) in order
to extract the total mean curvatuﬂe;EdoMl; D(E) has

HAMILTONIAN DYNAMICS AND GEOMETRY OF PHASE . ..

been numerically found to be smooth and very close to

(U|VH|?)uc (see Sec. VA Then, recalling the expression
of a multinomial expansion

v!

ng ny,
> XX, (36)
{n}, = ne=v n1! v n,,! ! v

(Xt +X,)"=
and identifying thex; with the principal curvaturek;, one
obtains

M= [] k+R=vIK+R, (37)
i=1

where K=1I;k; is the Gauss-Kronecker curvature aRds
the sum(36) without the term with the largest coefficient
(ny=1, Vk). Usingv!=v"e” "\27v,

Mi=v"e "J4mNK+R (38

5185
ledO"vj IMi|Yde
Se Se
1/v 1/v
= M7d ~ f M?|d
sz o7 ( 2E| il 0)
v 1/v
B[A_Eobi(EE)—FR(E)} . (42)
=
Finally,
1 1do,
T(E) Q, dE
fuy
VIVHI e
1 d MI—D(E)lde
Q, )5 [VH[ [VH] Q,)s, T
D E) v 1/v
= é (AZO bi(EE)+R(E)> . (43)

is obtained. The above mentioned theorem of Chern angquation(43) has the remarkable property of relating the

Lashof states that

|, Klao=vorsgS bz, @9

microcanonical definition of temperature of E85) with a
topologic invariantof % . The Betti numbers can be expo-
nentially large withN [for example, in the case ®¥-tori TV,
they areb,=(})], so that the quantityXb,)*N can con-
verge, at arbitrarily largé\, to a nontrivial limit(i.e., differ-
ent from 1. Thus, even though the energy dependenc® of

surface is related to the sum of all its Betti numbeiS g).
The Betti numbers ardiffeomorphism invariantef funda-
mental topological meaningt0]; therefore their sum is also
a topologic invariant. Vol S]] is the volume of a hyper-
sphere of unit radius. Combining Eq&8) and (39) and
integrating onXg, we obtain

J’ IMj|do=v"e" " 7TVJ |K|da'+j |R|do
P 2 2

>A§O bi(2g)+R(E), (40)

with the shorthand notationd=v"e”*VoI(S]) and R
=[5 |Rlda.

Now, with the aid of the inequality f||f]|*"du
=|ffdu/*", we can write

f||v|1|da:f |M;|1/Vdo>J M}do
g g g

If M;=0 everywhere on3g, then [[y Mida|"
=(IEE|M{|da)1’”, whence, on the hypothesis thit;=0
largely prevails[41], [[s M{do|""~([s_[M{|da)". Un-
der the same assumptiof;_M;do~ [s_|[M;|do and there-
fore

1lv
(41)

mirrored—at any arbitrarfd—by the energy variation of the
temperature. By considering E@®4) in the light of Eq.(43),
we can expect that some suitably abrupt and major change in
the topology of thet ¢ can be reflected in the appearance of
a peak of the specific heat, as a consequence of the associ-
ated energy dependence Bb,(2g) and of its derivative
with respect toE. In other words, we see that a link must
exist between thermodynamical phase transitions and suit-
able topology changes of the constant energy submanifolds
of the phase space of microscopic variables. The arguments
given above, though still in a rough formulation, provide an
attempt to make a connection between the topological as-
pects of themicrocanonicaldescription of phase transitions
and the already proposeopological hypothesiabout topol-
ogy changes in configuration space and phase transitions
[1,14,33-35

Direct support for the topological hypothesis has been
given by the analytic study of a mean-fiexdy model[33]
and by the numerical computation of the Euler characteristic
x of the equipotential hypersurfac&s of the configuration
space in a 2D lattice* model[35]. The Euler characteristic
is the alternate sum of all the Betti numbers of a manifold, so
it is another topological invariant, but it identically vanishes
for odd dimensional manifolds, likEg. In Ref.[35], x(2,)
neatly reveals the symmetry-breaking phase transition
through a sudden change of its rate of variation with the
potential energy density. A sudden “second-order” varia-
tion of the topology of%, appears in both Ref$33,35 as
the prerequisite for the appearance of a phase transition.
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These results strengthen the arguments given in the presewhich means that the microcanonical averag®®))yuc can
section about the role of the topology of the constant energype expressed as Riemannian integrals on the mechanical
hypersurfaces. In fact, the larghif the smaller are the rela- manifold (Mg ,g;).

tive fluctuations(52V)"¥(V) and (8°K)¥4(K) of the po- In particular, this also applies to the microcanonical defi-
tential and kinetic energies respectively. At very laNJghe  nition of entropy,

product manifoldSN"tx SN, with v=(V) and t=(K),

v+t=E, is a good model manifold to represent the part of £ do

> e that is overwhelmingly sampled by the dynamics and that s= kg In f dVpd¥g=kgzIn f dE'f NE———
therefore constitutes the effective support of the microca- H(p,q)<E 0 sellVH]

nonical measure oz . The kinetic energy submanifolds (46)
SNI1={(py,....pn) e RN|ZN  1p?=t} are hyperspheres.

In other words, at very largl the microcanonical mea- Which is alternative to that given in E(6), though equiva-
sure mathematically extends over the whole energy surfadent to it in the largeN limit. We have
but, as far as physics is concerned, a non-negligible contri-
bution to the microcanonical measure is in practice given 1
only by a small subset of the energy surface. This subset can S=kg In(— qu[E—V(q)]N’Z)
be reasonably modeled by the product manifdd ! CI(N/2+1) Jvg=<e
XSN™1, because the total kinetic and total potential
energies—having arbitrarily small fluctuations, provided that =kg Inj dVq/det g;) + const, (47)

N is large enough—can be considered almost constant. Thus, Me

sinceS) ! at anyt is always a hypersphere, a change in the

topology ofED“1 directly entails a change of the topology of where the last term gives the entropy as the logarithm of the
SN=1x SNt that is, of the effective model manifold for the Riemannian volume of the manifold.

subset off ¢ where the dynamics mainly “lives” at a given The topology changes of the surfa@?fl, which are to
energyE. be associated with phase transitions, will also deeply affect

At small N, the model with a single product manifold is the geometry of the mechanical manifoldM£,g;) and
no longer good and should be replaced by the noncountabigvi x R?,gg) and, consequently, they will affect the average
union U, c7cpSN "X SE-L, with v assuming all the pos- instability properties of their geodesic flows. In fact, EtB)
sible values in a real intervdl From this fact the smoothing links some curvature averages of these manifolds with the
of the energy dependence of thermodynamic variables folnumeric value of the largest Lyapunov exponent. Loosely
lows. Nevertheless, the geometric and topologic signals ofpeaking, major topology changesXj} ~* will affect micro-
the phase transition can remain much sharper than the theganonical averages of geometric quantities computed
modynamic signals at smal also (<100), as is shown by through Eq.(44), and likewise entropy, computed through
the 2D latticep® model[34,35. Eq. (47).

Finally, let us comment on the relationship between in- Thus, the characteristic temperature patterns displayed by
trinsic geometry, in terms of which we discussed the geomthe largest Lyapunov exponent at a second-order phase tran-
etrization of the dynamics, and extrinsic geometry, dealt withsjtion point—in the present paper reported for the ¥
in the present section. The most direct and intriguing link ismodel, in Ref[14] reported for latticep® models—appear as
established by the expression for microcanonical averages egasonable consequences of the deep variations of the topol-
generic observables of the kindA(g), with g ogy of the equipotential hypersurfaces of configuration

=(qz,---.0n), space.
1 We notice that topology seems to provide a common
<A>MC:—f dVpdVgA(q) ground to the roots of microscopic dynamics and of thermo-
Qon(E) JHpay<e dynamics and, notably, it can account for major qualitative

changes simultaneously occurring in both dynamics and ther-

_ - f dNg[E—V(q)]V?A(q) modynamics when a phase transition is present.
Vol(Mg) Jvg<e '
(44) A. Some preliminary numerical computations
whereMg={qe RN|V(q)$E}. Equation(44) is obtained by Let us briefly report on some preliminary numerical com-

means of a Laplace transform meth@$]; it is remarkable putations concerning the extrinsic geometry of the hypersur-
that [E—V(q)]N=det(g;), whereg; is the Jacobi metric facesXg in the case of the 3D XY model.

whose geodesic flow coincides with Newtonian dynamics The first point about extrinsic geometry that we numeri-
(see Sec. Iy, thereforedVg[E—V(q)]V2=dNq./det(g,) is cally addressed was to check whether the inverse of the tem-

the invariant Riemannian volume element df¢,g;). Thus, ~ Perature, which appears in E@5), can be reasonably fac-
torized into the product of a smooth “deformation factor”

dNg[E—V(q)]V2A(q) D(E) and of the total mean curvaturﬁagEMldo. To this

Vol(Mg) Jv(g)<e purpose, the two independently computed quantities
1 (UIVH[*)mc and

=VoiMig) )y d AVdet(@A@, (45 D(E)=[ s (do/| VH)(Mi/|IVH]) V[ 5, doM,]
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FIG. 19. The deformation factor D(E)=[/s _(do/

IVHI)(MI/IVHIDVL S5 doM,] of Eq. (35) (open circlesis plot- 05 =
ted vs energy densit/N and compared to the quantitg/|VH|/?) = °
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T

are compared in Fig. 19, showing that actually . . )
[ (do-/||VH||)(M*/||VH||):<1/||VH||2> [+ doM In FIG. 20. The normalized autocorrelation functioh$r) are
N 1 MCJ) g L plotted vs timer for a lattice ofN=10x 10x 10 and for four dif-

other V\_IOYdS.D(E)2<1/”VH||2>MC and no “singular” fea- ferent values of the temperaturrom top to bottom: T
ture in its energy pattern seems to exist, which suggests thatp 49,1.28,1.75,2.16).
Js.,doM; has to convey all the information relevant to the

detection of the phase transition. There is no reason to thingerature, below the transitiom.(T) rapidly increases,
that the validity of the factorization given in E€5) is lim-  whereas it mildly decreases above the transition. Below
ited to the special case of the XY model. =0.9, where the vortices disappear, the autocorrelation func-
The other point that we tackled concerns an indirect quantions of M, look quite different and it seems no longer pos-

tification of how a phase space trajectory curves around angible to coherently define a correlation time. This result has
knots on theX g to which it belongs. We can expect that the an intuitive meaning and confirms that the phase transition
way in which a hypersurfacgg is “filled” by a phase space corresponds to a change in the microscopic dynamics, as
trajectory existing on it will be affected by the geometry andalready signaled by the largest Lyapunov exponent; how-
topology of ¢ . In particular, we computed the normalized ever, notice that the correlation times,,(T) are much
autocorrelation function of the time seri&s,[x(t)] of the  longer than the inverse values of the correspondingT).
mean curvature at the points Bt visited by the phase space Qualitatively,\;(T) and ¢4, (T) look similar; however, the

i 3 N corr
trajectory, that is, the quantity two functions are not simply related.

P(7)=({My(t+7)oM3(D)):, (48) VI. DISCUSSION AND PERSPECTIVES

where M 1(t) =M (t) —(M4(t")); is the fluctuation with The microscopic Hamiltonian dynamics of the classical
respect to the averageéhe “process” M,(t) is supposed Heisenberg XY model in two and three spatial dimensions
stationary. Our aim was to highlight the extrinsic geometric-

dynamical counterpart of a symmetry-breaking phase transi- 500 — ]
tion. C ]
The practical computation df (7) proceeds by working 100[ o -
out the Fourier power spectrutﬁ/l 1(®)|? of My[x(t)], ob- C ": ]
tained by averaging 15 spectra computed by a fast Fourier 300 L & ]
transform algorithm with a mesh of'2 points and a sam- E o 1
pling time At=0.1. Some typical results fdf(7), obtained e L ]
at different temperatures, are reported in Fig. 20. The pat- 200 .. ]
ternsI'(7) display a first regime of very fast decay, which is ®
not surprising because of the chaoticity of the trajectories at 100 |- - ]
any energy, followed by a longer tail of slower decay. An r ‘“~..“____.ﬂ__. ,,,,,,,,, — ]
autocorrelation timer.,,, can be defined through the first ol v v vy ]
intercept of '(7) with an almost-zero levell{=0.01). In ! 2 3 4
Fig. 21 we report the values af.,,, so defined vs tempera- T
ture. Corresponding with the phase transit{omose critical FIG. 21. Autocorrelation times,,,, are plotted vs temperature

temperature is marked by a vertical dotted Jin€.,,  T. The vertical dashed line points out the temperafye 2.17 at
changes its temperature dependence: on lowering the teruhich the phase transition occurs.
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has been numerically investigated. This was possible afteand to other kinds of transitions, as mentioned in the Intro-
the addition to the Heisenberg potentials of a standaué-  duction, is far reaching.
dratio kinetic energy term. Special emphasis was given to Here we arrive at the second point listed above. In the
the study of the dynamical counterpart of phase transitiondramework of a Riemannian geometrization of Hamiltonian
detected through the time averages of conventional thermalynamics, the largest Lyapunov exponent is related to the
dynamic observables, and to the mathematical concepts thatirvature properties of suitable submanifolds of configura-
are brought about by Hamiltonian dynamics. tion space whose geodesics coincide with the natural mo-
The motivations of the present study are given in the Intions. In the mathematical light of this geometrization of the
troduction. Let us now summarize what are the outcomes oflynamics, and after the numerical evidence of a sharp peak
our investigations and comment about their meaning. Theref curvature fluctuations at the phase transition point, the
are three main topics, tightly related one to the otlierthe  particular pattern ofr4(T) is due to some major change
phenomenological description of phase transitions througloccurring to the geometry of mechanical manifolds at the
the natural, microscopic dynamics in place of the usuaphase transition. Elsewhere, we have conjectured that indeed
Monte Carlo stochastic dynamic€2) the investigation, in  some major change in th®pology of configuration space
the presence of phase transitions, of certain aspects of tlsibmanifolds should be the very source of the mentioned
(intrinsic) geometry of the mechanical manifolds where themajor change of geometry.
natural dynamics is represented as a geodesic flow;(&nd Thus, we have made a first attempt to provide an analytic
the discussion of the relationship between tbetrinsio ge-  argument supporting this topological hypothegise third
ometry of constant energy hypersurfaces of phase space apdint of the above ligt This is based on the appearance of a
thermodynamics. nontrivial relationship between the geometry of constant en-
About the first point, we have found that microscopic ergy hypersurfaces of phase space and their topology and the
Hamiltonian dynamics very clearly evidences the presence ahicrocanonical definition of thermodynamics. Even still in a
a second-order phase transition through the time averages pfeliminary formulation, our reasoning already seems to in-
conventional thermodynamic observables. Moreover, the fadicate the topology of energy hypersurfaces as the best can-
miliar sharpening effects, at increasiNgof the specific heat didate to explain the underlying origin of the dynamical sig-
peak and of the order parameter bifurcation are observedature of phase transitions detected throdg(iT).
The evolution of the order parameter with respect to the The circumstance, mentioned in the preceding section, of
physical time(instead of the fictitious Monte Carlo timés  the persistence at small of geometric and topologic signals
also accessible, showing the appearance of Goldstone modefsthe phase transition that are much sharper than the ther-
and that, in the presence of a second-order phase transitiomodynamic signals is of prospective interest for the study of
there is a clear tendency to the freezing of transverse flugghase transition phenomena in finite, small systems, a topic
tuations of the order parameter whéhis increased. The of growing interest thanks to the modern developments—
“freezing” is observed together with a reduction of the lon- mainly experimental—in the physics of nuclear, atomic, and
gitudinal fluctuations, i.e., the rotation of the magnetizationmolecular clusters, of conformational phase transitions in ho-
vector slows down, preparing for the breaking of hé2) mopolymers and proteins, of mesoscopic systems, and of
symmetry aiN—o. At variance, when a Kosterlitz-Thouless soft-matter systems of biological interest. In fact, some un-
transition is present, on increasihgthe magnetization vec- ambiguous information for small systems—even about the
tor has a faster rotation and a smaller norm, preparing for thexistence itself of a phase transition—could be better ob-
absence of symmetry breaking in tiNe— limit, as ex- tained by means of concepts and mathematical tools outlined
pected. here and in the quoted papers. Here we also join the very
Remarkably, to detect phase transitions, microscopiinteresting line of thought of Gross and collaborafd& 2]
Hamiltonian dynamics provides us with additional observ-about the microcanonical description of phase transitions in
ables of purely dynamical nature, i.e., without statisticalfinite systems.
counterpart: the Lyapunov exponents. Similarly to what we Let us conclude with a speculative comment about an-
and other authors have already reported for other mddets  other possible direction of investigation related to this signa-
the Introduction, in the case of the 3IXY model also a ture of phase transitions through Lyapunov exponents. In a
characteristic temperature pattern of the largest Lyapunofield-theoretic framework, based on a path integral formula-
exponent shows up in the presence of the second-order phatien of classical mechanicg43—45, Lyapunov exponents
transition, signaled by a “cuspy” point. By comparing the are defined through the expectation values of suitable opera-
patternsh(T) given by Hamiltonian dynamics and by a tors. In the field-theoretic framework, ergodicity breaking
suitably defined random dynamics, we suggest that the trarappears to be related to a supersymmetry bredldfj and
sition between thermodynamically ordered and disorderedlyapunov exponents are related to mathematical objects that
phases has its microscopic dynamical counterpart in a trarkave many analogies with topological concepts].
sition between weak and strong chaos. Thoagbosteriori The mathematical concepts and methods that the Hamil-
physically reasonable, this result is far from obvious, be-tonian dynamical approach brings about could be useful also
cause the largest Lyapunov exponent measures the averagethe study of more “exotic” transition phenomena than
local instability of the dynamics, whicta priori has little to  those tackled in the present work. As well as the above men-
do with acollective and therefore global, phenomenon suchtioned soft-matter systems, this could be the case of transi-
as a phase transition. The effort to understand the reason ftion phenomena occurring in amorphous and disordered ma-
such a sensitivity of\; to a second-order phase transition terials.
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energy increasing update of the coordinates, no coordinate

change is performed. In this way, the total energy remains
APPENDIX almost constant with only small fluctuations. As usual in
Monte Carlo simulations, it is appropriate to fix the param-

. Let us briefly explam how a random Markovian dynamics ters so that the acceptance rate of the proposed updates of
is constructed on a given constant energy hypersurface Fhe configurations is in the range 30%—-60%. A reliability

phase space. The goal is to compare the energy dependgrbq?eck of the random walk so defined, and of the adequacy of
of the largest Lyapunov exponent computed for the Hamil-

. i . the phase space sampling through the number of steps
tonian flow and for a suitable random walk, respecuvely.adopted in each run, is obtained by computing the averages

Ong has to devise an algorithm to generate a randpm yvalk ° typical thermodynamic observables of known temperature
a given energy hypersurface such that, once the time interv ependences

At separating two successive steps is assigned, the average, improvement to the above described “demon” algo-
increments of the coordin_ates are equal to the average incr?ﬁhm has been obtained through a simple reprojectio gn
_mer_1ts of the same co_ordmates for the differentiable dynam(-)f the updated configuration29]; the coordinates generated
ics integrated with a time stefst. In other words, the ran- by means of Eq(AL) are corrected with the formulas

dom walk has to roughly mimic the differentiable dynamics

with the exception of its possible time correlations.

One starts with a random initial configuration of the co- (dH/dq;)AE
ordinatesy;, i=1,2,...N, uniformly distributed in the in- Ai(kAD—>ai(KAD+| '
terval [0,2r], and with a random Gaussian-distributed > [pf+(3H/9q;)?]
choice of the coordinatgs . The random pseudotrajectory is I=1 xg(KAt)
generated according to the simple scheme (A3)
(Ai) k+ 1)t (i) kat T ¢ Gi kAt PiAE
(A1) pi(kAt)—pi(kAt) — | — ,
(P (k+ at— (Pkat T @pGi AL, E [p12+(l9H/3CIj)2]
=1 Xg(kAL)

where At is the time interval associated with one step

k—k+1 in the Markovian chain,G;, are Gaussian- whereAE is the difference between the energy of the new
distributed random numbers with zero expectation value andonfiguration and the reference energy, aptkAt) denotes

unit variance, and the parameterg and «,, are the vari- the random phase space trajectory. At each assigned energy,
ances of the processeg;Jx and (p;). These variances are the computation of the largest Lyapunov exponefiof this

functions of the energy per degree of freedeniThey have  random trajectory is obtained by means of the standard defi-
to be set equal to the numerically computed average incresition

ments of the coordinates obtained along the differentiable

trajectories integrated with the same time sidp that is, n

ro 1 oe DAy
N o\ 12 )\l_r!m nAt k§="1 In lZ(kAD)| (Ad)
. (6)_<(1 s LA+ A0 g )] ) >
A TVIN & At)? .
' (40 t where £(t)=(£(t),£(t)) is given by the discretized version
1 ) 12 of the tangent dynamics,
{2
i & ((K+1)At)—2& (kAL + & ((k—1)At)
13 [p(t+An—p 17| At
apl(€)= Ngl (A1)2 NCogPv
¢ +2 ( : ) &/(kAt)=0. (A5)
1N =1 194;9q; xg(kAt)
SERLINE
B t

For wide variations of the parameteist(and acceptance
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rate), the resulting va_llues _oﬁ‘ ar_e_in very good agreement. one has [25] fH(p,q):Edequ:ConSD(f\/(q)gEdNQ[E
Moreover, the algorithm is sufficiently stable and the final —V(q)]V?~ . A random process obtained by sampling such
value of A} is independent of the choice of the initial condi- a measure—with the additional property of a relation be-
tion. tween the average increment and the physical time/stegs

A more refined algorithm could be implemented by discussed above—would enter into H&5) to yield AR.
constructing a random Markovian process(ty) However, this would result in much heavier numerical com-
=[q4(ty), . - . an(te) ] performing an importance sampling putations(with some additional technical difficulty at large
of the measuredu=[E—V(q)]V? 'dq in configuration ~N) which was not worthwhile in view of the principal aims
space. In fact, similarly to what is reported in E@4), of the present work.
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