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Hamiltonian dynamics and geometry of phase transitions in classicalXY models
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The Hamiltonian dynamics associated with classical, planar, HeisenbergXY models is investigated for two-
and three-dimensional lattices. In addition to the conventional signatures of phase transitions, here obtained
through time averages of thermodynamical observables in place of ensemble averages, qualitatively different
information is derived from the temperature dependence of Lyapunov exponents. A Riemannian geometriza-
tion of Newtonian dynamics suggests consideration of other observables of geometric meaning tightly related
to the largest Lyapunov exponent. The numerical computation of these observables—unusual in the study of
phase transitions—sheds light on the microscopic dynamical counterpart of thermodynamics, also pointing to
the existence of some major change in the geometry of the mechanical manifolds at the thermodynamical
transition. Through the microcanonical definition of the entropy, a relationship between thermodynamics and
the extrinsic geometry of the constant energy surfacesSE of phase space can be naturally established. In this
framework, an approximate formula is worked out determining a highly nontrivial relationship between tem-
perature and topology ofSE . From this it can be understood that the appearance of a phase transition must be
tightly related to a suitable major topology change ofSE . This contributes to the understanding of the origin
of phase transitions in the microcanonical ensemble.

PACS number~s!: 05.45.2a, 05.20.2y
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I. INTRODUCTION

The present paper deals with the study of the microsco
Hamiltonian dynamical phenomenology associated w
thermodynamical phase transitions. This general subjec
addressed in the special case of planar, classical Heisen
XY models in two and three spatial dimensions. A prelim
nary presentation of some of the results and ideas conta
in this paper has already been given in@1#.

There are several reasons to tackle the Hamiltonian
namical counterpart of phase transitions. On the one h
we might wonder whether our knowledge of the alrea
wide variety of dynamical properties of Hamiltonian syste
can be further enriched by considering the dynamical sig
tures, if any, of phase transitions. On the other hand, ita
priori conceivable that theoretical investigation of the pha
transition phenomena could also benefit a direct investiga
of the natural microscopic dynamics. In fact, from a ve
general point of view, we can argue that when microsco
dynamics was completely inaccessible to any kind of inv
tigation, statistical mechanics was invented just to repl
dynamics. During recent decades, the advent of powe
computers has made possible, to some extent, direct ac
to microscopic dynamics through the so called molecu
dynamical simulations of the statistical properties of ‘‘ma
roscopic’’ systems.

Molecular dynamics can be either considered as a m
alternative to Monte Carlo methods in practical compu
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tions, or seen as a possible link to concepts and meth
~those of nonlinear Hamiltonian dynamics! that could deepen
our insight about phase transitions. In fact, by constructi
the ergodic invariant measure of Monte Carlo stochastic
namics, commonly used in numerical statistical mechan
is the canonical Gibbs distribution, whereas there is no g
eral result that guarantees the ergodicity and mixing of na
ral ~Hamiltonian! dynamics. Thus there is general interest
any contribution that helps in clarifying under what cond
tions equilibrium statistical mechanics correctly describ
the average properties of a large collection of particl
safely replacing their microscopic dynamical description.

Actually, as already shown and confirmed by the resu
reported below, there are some intrinsically dynamical o
servables that clearly signal the existence of a phase tra
tion. Notably, Lyapunov exponents appear as sensitive m
surements for phase transitions. They are also probes
hidden geometry of the dynamics, because Lyapunov ex
nents depend on the geometry of certain ‘‘mechanical ma
folds’’ whose geodesic flows coincide with the natural m
tions. Therefore, a particular energy—or temperature
dependence of the largest Lyapunov exponent at a ph
transition point also reflects some important change in
geometry of the mechanical manifolds.

As we shall discuss throughout the present paper, the
pology of these manifolds has also been discovered to pl
relevant role in phase transition phenomena~PTP!.

Another strong reason for interest in the Hamiltonian d
namical counterpart of PTP is related to the equivale
problem of statistical ensembles. Hamiltonian dynamics
its most natural and tight relationship with the microcano
cal ensemble. Now, the well known equivalence among
the statistical ensembles in the thermodynamic limit is va
in general in the absence of thermodynamic singularit

:
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5172 PRE 61CERRUTI-SOLA, CLEMENTI, AND PETTINI
i.e., in the absence of phase transitions. This is not a d
culty for statistical mechanics as it might seem at first si
@2#; rather, this is a very interesting and intriguing point.

The inequivalence of canonical and microcanonical
sembles in the presence of a phase transition has been
lytically shown for a particular model by Hertel and Thirrin
@3#. It is mainly revealed by the appearance of negative v
ues of the specific heat and has been discussed by se
authors@4,5#.

The microcanonical description of phase transitions se
also to offer many advantages in tackling first-order ph
transitions @6#, and seems considerably less affected
finite-size scaling effects with respect to the canonical
semble description@7#. This nonequivalence problem, to
gether with certain advantages of the microcanonical
semble, strengthens the interest in the Hamilton
dynamical counterpart of PTP. Let us briefly mention t
existing contributions in the field.

Butera and Caravati@8#, considering anXY model in two
dimensions, found that the temperature dependence of
largest Lyapunov exponent changes just near the crit
temperatureTc of the Kosterlitz-Thouless phase transitio
Other interesting aspects of the Hamiltonian dynamics of
XY model in two dimensions have been extensively cons
ered in @9#, where a very rich phenomenology is reporte
Recently, the behavior of Lyapunov exponents has b
studied in Hamiltonian dynamical systems~i! with long-
range interactions@10–12#, ~ii ! describing either clusters o
particles or magnetic or gravitational models exhibiti
phase transitions,~iii ! in classical lattice field theories with
O(1), O(2), andO(4) global symmetries in two and thre
space dimensions@13,14#, ~iv! in the XY model in two and
three space dimensions@1#, and~v! in the ‘‘Q transition’’ of
homopolymeric chains@15#. The pattern ofl(T) close to the
critical temperatureTc is model dependent. The behavior
Lyapunov exponents near the transition point has been
sidered also in the case of first-order phase transiti
@16,17#. It is also worth mentioning the very intriguing resu
of Ref. @18#, where a glassy transition is accompanied b
sharp jump ofl(T).

l(T) always detects a phase transition and, even if
pattern close to the critical temperatureTc is model depen-
dent, it can also be used as an order parameter—of dyn
cal origin—in the absence of a standard order paramete~as
in the case of the mentionedQ transition of homopolymers
and of the glassy transition in amorphous materials!. This
appears of great prospective interest also in the light of
cently developed analytical methods to compute Lyapu
exponents~see Sec. IV!.

Among Hamiltonian models with long-range interactio
exhibiting phase transitions, the most extensively studie
the mean-fieldXY model@11,19–21#, whose equilibrium sta-
tistical mechanics is exactly described, in the thermodyna
limit, by mean-field theory@11#. In this system, the theoreti
cally predicted temperature dependence of the larg
Lyapunov exponentl displays nonanalytic behavior at th
phase transition point.

The aims of the present paper are to investigate the
namical phenomenology of Kosterlitz-Thouless and seco
order phase transitions in the two- and three-dimensio
~2D and 3D! classical HeisenbergXY models, respectively
-
t

-
na-

l-
ral

s
e
y
-

-
n

he
al

e
-

.
n

n-
s

a

s

i-

-
v

is

ic

st

y-
d-
al

to highlight the microscopic dynamical counterpart of pha
transitions through the temperature dependence of
Lyapunov exponents, also providing some physical interp
tation of abstract quantities involved in the geometric the
of chaos~in particular, for vorticity, Lyapunov exponents
and sectional curvatures of configuration space!; and to dis-
cuss the hypothesis that phase transition phenomena cou
originated by suitable changes in the topology of the cons
energy hypersurfaces of phase space, therefore hinting
mathematical characterization of phase transitions in the
crocanonical ensemble.

The paper is organized as follows. Sections II and III a
devoted to the dynamical investigation of the 2D and 3DXY
models, respectively. In Sec. IV the geometric description
chaos is considered, with the analytic derivation of the te
perature dependence of the largest Lyapunov exponent
geometric signatures of a second-order phase transition,
the topological hypothesis. Section V contains a presenta
of the relationship between the extrinsic geometry and top
ogy of the energy hypersurfaces of phase space and the
dynamics; the results of some numeric computations are
reported. Finally, Sec. VI is devoted to summarizing t
achievements reported in the present paper and to discus
their meaning.

II. 2D XY MODEL

We considered a system of planar, classical ‘‘spins’’~in
fact, rotators! on a square lattice ofN5n3n sites, and in-
teracting through the ferromagnetic interactionV5
2(^ i , j &JSi•Sj ~where uSi u51). The addition of a standard
i.e., quadratic, kinetic energy term leads to the followi
choice of the Hamiltonian:

H5 (
i , j 51

n S pi , j
2

2
1J@22cos~qi 11,j2qi , j !

2cos~qi , j 112qi , j !# D , ~1!

whereqi , j are the angles with respect to a fixed direction
the reference plane of the system. In the usual definition
the XY model both the kinetic term and the constant te
2JN are lacking; however, their contribution does n
modify the thermodynamic averages~because they usually
depend only on the configurational partition function,ZC

5*) i 51
N dqi exp@2bV(q)#, the momenta being trivially inte-

grable when the kinetic energy is quadratic!. Thus, as we
tackle classical systems, the choice of a quadratic kin
energy term is natural because it corresponds to1

2 ( i 51
N uṠi u2,

written in terms of the momentapi , j canonically conjugated
to the Lagrangian coordinatesqi , j . The constant term 2JN is
introduced to make the low energy expansion of Eq.~1! co-
incident with the Hamiltonian of a system of weakly coupl
harmonic oscillators.

The theory predicts for this model a Kosterlitz-Thoule
phase transition occurring at a critical temperature estima
aroundTc;J. Many Monte Carlo simulations of this mode
have been done in order to check the predictions of
theory. Among them, we quote those of Tobochnik a
Chester@22# and of Gupta and Baillie@23# which, on the
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PRE 61 5173HAMILTONIAN DYNAMICS AND GEOMETRY OF PHASE . . .
basis of accurate numerical analysis, confirmed the pre
tions of the theory and fixed the critical temperature atTc
50.89 (J51).

The analysis of the present work is based on numer
integration of the equations of motion derived from Ham
tonian~1!. The numerical integration is performed by mea
of a bilateral, third-order, symplectic algorithm@24#, and it
is repeated at several values of the energy densitye5E/N
(E is the total energy of the system, which depends upon
choice of initial conditions!. While the Monte Carlo simula-
tions perform statistical averages in the canonical ensem
Hamiltonian dynamics has its statistical counterpart
the microcanonical ensemble. Statistical averages are
replaced by time averages of relevant observables. In
perspective, from the microcanonical definition of tempe
ture 1/T5]S/]E, whereS is the entropy, two definitions o
temperature are available:T5(2/N)^K& ~where K is the
kinetic energy per degree of freedom!, if S
5 ln *)i51

N dqidpiQ„E2H(p,q)…, where Q(•) is the Heavi-

side step function, andT̃5@(N/221)^K21&#21, if S

5 ln *)i51
N dqidpid„H(p,q)2E… @25#. T ~or T̃) is numerically

determined by measuring the time average of the kinetic
ergy K per degree of freedom~or its inverse!, i.e., T

5 limt→`(2/N)(1/t)*0
t dtK(t) ~and similarly forT̃). There is

no appreciable difference in the outcomes of the comp
tions of temperature according to these two definitions.

A. Dynamical analysis of thermodynamical observables

1. Order parameter

The order parameter for a system of planar ‘‘spin
whose Hamiltonian is invariant under the action of the gro
O(2) is the bidimensional vector

M5~Mx ,M y!

5S (
i , j 51

n

Si , j
x , (

i , j 51

n

Si , j
y D[S (

i , j 51

n

cosqi , j , (
i , j 51

n

sinqi , j D ,

~2!

which describes the mean spin orientation field. After
Mermin-Wagner theorem, we know that no symmet
breaking transition can occur in one- and two-dimensio
systems with a continuous symmetry and nearest-neigh
interactions. This means that, at any nonvanishing temp
ture, the statistical average of the total magnetization ve
is necessarily zero in the thermodynamic limit. However
vanishing magnetization is not necessarily expected w
computed by means of Hamiltonian dynamics at finiteN. In
fact, statistical averages are equivalent to averages comp
through suitable Markovian Monte Carlo dynamics thata
priori can reach any region of phase space, whereas in p
ciple a true ergodicity breaking is possible in the case
differentiable dynamics. Also, an ‘‘effective’’ ergodicit
breaking of differentiable dynamics is possible, when
relaxation times of time averages to ensemble averages
increasing very fast withN @26#.
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This model has two integrable limits: coupled harmon
oscillators and free rotators, at low and high temperatu
respectively. Hereafter,T is used in units of the coupling
constantJ.

For a lattice ofN510310 sites, Fig. 1 shows that at low
temperatures (T,0.5), where the system is almost harmon
we can observe a persistent memory of the total magne
tion associated with the initial condition, which, on the typ
cal time scales of our numeric simulations (106 units of
proper time!, looks almost frozen. By raising the temperatu
above a first thresholdT0.0.6, the total magnetization
vector—observed on the same time scale—starts rotating
the plane where it is confined. A further increase of the te
perature induces a faster rotation of the magnetization ve
together with a slight reduction of its average modulus.
temperatures slightly greater than 1, we observe that alre
at N510310 a random variation of the direction and th
modulus of the vectorM (t) sets in. AtT.1.2, we observe a
fast relaxation and, at high temperatures (T.10), a sort of
saturation of chaos.

At a first glance, the results reported in Fig. 1 could su
gest the presence of a phase transition associated with
breaking of theO(2) symmetry. In fact, having in mind the
Landau theory, the ring-shaped distribution of the instan
neous magnetization shown by Fig. 1 is the typical signat
of anO(2) broken symmetry phase and the spotlike patte
around zero are proper to the unbroken symmetry phase

The apparent contradiction of these results with
Mermin-Wagner theorem is resolved by checking whet
the observed phenomenology is stable withN. Thus, some
simulations have been performed at larger values ofN. At
any temperature, we found that the average modu
^uM (t)u& t of the vectorM (t), computed along the trajectory
systematically decreases on increasingN. However, for tem-
peratures lower thanT0, the N dependence of the order pa

FIG. 1. The magnetization vectorM (t) computed along a tra-
jectory for the 2D XY model at different temperatures on a latt
of N510310. Each point represents the vectorM (t) at a certain
time t.
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5174 PRE 61CERRUTI-SOLA, CLEMENTI, AND PETTINI
rameter is very weak, whereas for temperatures greater
T0, theN dependence of the order parameter is rather stro
In Fig. 2 two extreme cases (N510310 and N5200
3200) are shown forT50.74. The systematic trend o
^uM (t)u& toward smaller values at increasingN is consistent
with its expected vanishing in the limitN→`.

At T51, Fig. 3 shows that, when the lattice dimension
greater than 50350, M (t) displays random variations bot
in direction ~in the interval @0,2p#) and in modulus~be-
tween zero and a value that is smaller at largerN).

FIG. 2. The magnetization vectorM (t) at the temperatureT
50.74, corresponding to the specific energye50.8 and computed
in a time intervalDt5105, with a random initial configuration, on
lattices ofN510310 ~external points! and ofN52003200 ~inter-
nal points!.
an
g.

2. Specific heat

By means of the recasting of a standard formula that
lates the average fluctuations of a generic observable c
puted in canonical and microcanonical ensembles@27#, and
by specializing it to the kinetic energy fluctuations, one o
tains a microcanonical estimate of the canonical spec
heat,

cV~T!5
CV

N
→H cV~e!5

kBd

2 S 12
Nd

2

^K2&2^K&2

^K&2 D 21

,

T5T~e!,
~3!

whered is the number of degrees of freedom for each p
ticle. Time averages of the kinetic energy fluctuations co
puted at any given value of the energy densitye yield
CV(T), according to its parametric definition in Eq.~3!.

From the microcanonical definition 1/CV5]T(E)/]E of
the constant volume specific heat, a formula can be wor
out @25# that is exact atany value ofN @at variance with the
expression~3!#. It reads

cV5
CV

N
5@N2~N22!^K&^K21&#21 ~4!

and it is the natural expression to be used in Hamilton
dynamical simulations of finite systems.

The numerical simulations of the Hamiltonian dynami
of the 2D XY model—computed with both Eqs.~3! and
~4!—yield a cuspy pattern forcV(T) peaked atT.1 ~Fig. 4!.
This is in good agreement with the outcomes of canon
Monte Carlo simulations reported in Refs.@22,23#, where a
pronounced peak ofcV(T) was detected atT.1.02.
y

f

FIG. 3. The magnetization vectorM (t) at the
temperatureT51, corresponding to the energ
e51.2, computed in a time intervalDt5105,
with a random initial configuration on lattices o
~a! N510310, ~b! N550350, ~c! N5100
3100, and~d! N52003200 sites, respectively.



re
f

d
e
p

m

-
.

a

si

b
je

is

re
te

sing
s
as a

qua-
.
as
em

s

m
of

ent

e

PRE 61 5175HAMILTONIAN DYNAMICS AND GEOMETRY OF PHASE . . .
On varying the lattice dimensions, the peak height
mains constant, in agreement with the absence o
symmetry-breaking phase transition.

3. Vorticity

Another thermodynamic observable that can be studie
the vorticity of the system. Let us briefly recall that if th
angular differences of nearby ‘‘spins’’ are small, we can su
pose the existence of a continuum limit functionu(r ) that
conveniently fits a given spatial configuration of the syste
Spin waves correspond to regular patterns ofu(r ), whereas
the appearance of a singularity inu(r ) corresponds to a to
pological defect, or a vortex, in the ‘‘spin’’ configuration
When such a defect is present, along any closed pathC that
contains the center of the defect, one has

R
C
“u~r !•dr52pq, q50,61,62, . . . , ~5!

indicating the presence of a vortex whose intensity isq. For
a lattice model with periodic boundary conditions, there is
equal number of vortices and antivortices~i.e., vortices ro-
tating in opposite directions!. Thus, the vorticity of our
model can be defined as the mean total number of equal
vortices per unit volume. In order to compute the vorticityV
as a function of temperature, we have averaged the num
of positive vortices along the numerical phase space tra
tories. On the lattice,r is replaced by the multi-indexi and
“mu i5qi1m2qi . Then the number of elementary vortices
counted: the discretized version ofrh“u•dr51 amounts to
one elementary vortex on a plaquette. ThusV is obtained by
summing over all the plaquettes. Our results are in ag
ment with the values obtained by Tobochnik and Ches
@22# by means of Monte Carlo simulations withN560360.

As shown in Fig. 5, on the 10310 lattice, the first vortex
shows up atT;0.6 and on the 40340 lattice atT;0.5,

FIG. 4. Specific heat at constant volume computed by mean
Eq. ~4! on a lattice ofN510310 ~open circles! and N515315
~full triangles!. Starlike squares refer to specific heat values co
puted by means of Eq.~3! on a lattice ofN510310 .
-
a

is

-

.

n

gn

er
c-

e-
r

when the system changes its dynamical behavior, increa
its chaoticity~see Sec. II B!. At lower temperatures, vortice
are less probable, because the formation of a vortex h
minimum energy cost. BelowT;1, the vortex density grows
steeply with a power lawV(T);T10. The growth ofV then
slows down, until saturation is reached atT;10.

B. Lyapunov exponents and chaoticity

The values of the largest Lyapunov exponentl1 have
been computed using the standard tangent dynamics e
tions @see Eqs.~10! and ~A4!#, and are reported in Fig. 6
Below T.0.6, the dynamical behavior is nearly the same
that of harmonic oscillators and the excitations of the syst
are only spin waves. In the interval@0.0, 0.6#, the observed

of

-

FIG. 5. Vorticity function @plotted in ~a! linear scale and~b!
logarithmic scale# computed at different temperatures for lattices
N510310 ~open circles! andN540340 ~full circles!. The results
of the Monte Carlo simulations for a lattice ofN560360 ~crosses!
are from @22#. The dashed line represents the power lawV(t)
;T10.

FIG. 6. The largest Lyapunov exponents computed on differ
lattice sizes:N510310 ~starred squares!, N520320 ~open tri-
angles!, N540340 ~open stars!, N550350 ~open squares!, and
N51003100 ~open circles!. In the inset, symbols have the sam
meaning.
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FIG. 7. The magnetization vectorM (t), com-
puted at the temperatureT51.7, on lattices of
different sizes. On increasing the lattice dime
sions, the longitudinal fluctuations decrease. T
time intervalDt53.53104283104 is the same
for the four simulations.
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temperature dependencel1(T);T2 is equivalent to the
l1(e);e2 dependence@since at low temperatureT(e)}e#,
already found—analytically and numerically—in the qua
harmonic regime of other systems and characteristic
weakly chaotic dynamics@28#. AboveT.0.6, vortices begin
to form and correspondingly the largest Lyapunov expon
signals a ‘‘qualitative’’ change of the dynamics through
steeper increase vsT. At T.0.9, where the theory predicts
Kosterlitz-Thouless phase transition,l1(T) displays an in-
flection point. Finally, at high temperatures, the power l
l1(T);T21/6 is found.

III. 3D XY MODEL

In order to extend the dynamical investigation to the c
of second-order phase transitions, we have studied a sy
described by a Hamiltonian having at the same time the m
characteristics of the 2D model and the differences neces
for the appearance of a spontaneous symmetry breaking
low a certain critical temperature. The model we have cho
is such that the spin rotation is constrained on a plane
only the lattice dimension has been increased, in orde
elude the ‘‘no go’’ conditions of the Mermin-Wagner the
rem. This is simply achieved by tackling a system defined
a cubic lattice ofN5n3n3n sites and described by th
Hamiltonian

H5 (
i , j ,k51

n S pi , j ,k
2

2
1J@32cos~qi 11,j ,k2qi , j ,k!2cos~qi , j 11,k

2qi , j ,k!2cos~qi , j ,k112qi , j ,k!# D . ~6!

A. Dynamical analysis of thermodynamical observables

The basic thermodynamical phenomenology of a seco
order phase transition is characterized by the existenc
-
f

t

e
em
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ry
e-
n
d

to

n

d-
of

equilibrium configurations that cause the order paramete
bifurcate away from zero at some critical temperatureTc and
by a divergence of the specific heatcV(T) at the sameTc .
Therefore, this is the obvious starting point for the Ham
tonian dynamical approach.

1. Order parameter

Below a critical value of the temperature, the symme
breaking in a system invariant under the action of theO(2)
group appears as the selection—by the average magne
tion vector of Eq.~2!—of a preferred direction among all th
possible, energetically equivalent choices. On increasing
lattice dimension, the symmetry breaking is therefore ch
acterized by a sort of simultaneous ‘‘freezing’’ of the dire
tion of the order parameterM and by the convergence of it
modulus to a nonzero value.

Figure 7 shows that in the 3D lattice, atT,2, i.e., in the
broken-symmetry phase~as we shall see in the following!,
the dynamical simulations yield a thinner spread of the lo
gitudinal fluctuations on increasingN, that is,uM u oscillates
and exhibits a trend to converge to a nonzero value, and
the transverse fluctuations damp, ‘‘fixing’’ the direction
the oscillations. This direction depends on the initial con
tions.

Moreover, the dynamical analysis provides us with bet
detail than a simple distinction between regular and cha
dynamics. In fact, it is possible to distinguish between th
different dynamical regimes~Fig. 8!. At low temperatures,
up to T.0.8, one observes the persistency of the initial
rection and of an equilibrium value of the modulusuM u close
to 1. At 0.8,T,2.2, one observes transverse oscillatio
whose amplitude increases with temperature. AtT.2.2, the
order parameter exhibits the features typical of an unbro
symmetry phase. In fact, it displays fluctuations peaked
zero, whose dispersion decreases by increasing the tem
ture ~bottom of Fig. 8! and, at a given temperature, by in
creasing the lattice volume@Figs. 9~a,b!#.
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FIG. 8. The magnetization vectorM (t) com-
puted at different temperatures on a lattice ofN
510310310 spins.
al

of
te

n
e

d
o

du
2
e

a

r
b
e

ia
ra
r
en

il-

ifi
n
io
ed
w

a
ned
e
be

wo-

ne

his
er,
ice
iva-

ree
tion
efi-
ree
en
ed

2.
d
is
ra-

o-
est
m-
ic

me-
We can give an estimate of the order parameter by ev
ating the average of the modulus^uM (t)u&5r(T). At T
,2.2, theN dependence is given mainly by the rotation
the vector, while the longitudinal oscillations are modera
as shown in Fig. 10. At temperatures aboveT.2.2, we ob-
serve the squeezing ofr(T) to a small value.

The existence of a second-order phase transition ca
recognized by comparing the temperature behavior and thN
dependence of the thermodynamic observables compute
the 2D and 3D models. Both systems exhibit the rotation
the magnetization vector and small fluctuations of its mo
lus when they are considered on small lattices. In the
model the average modulus of the order parameter is th
retically expected to vanish logarithmically withN, which
seems qualitatively compatible with the weakN dependence
shown in Fig. 2, whereas in the 3D model we observe
stability with N of ^uM u&, suggesting the convergence to
nonzero value of the order parameter in the limitN→` also,
as shown in Fig. 7.

T.2.2 is an approximate value of the critical temperatu
Tc of the second-order phase transition. This value will
refined in Sec. III B. No finite-size scaling analysis has be
performed for two different reasons:~i! our main concern is
a qualitative phenomenological analysis of the Hamilton
dynamics of phase transitions rather than a very accu
quantitative analysis;~ii ! finite-size effects are much weake
in the microcanonical ensemble than in the canonical
semble@7#.

2. Specific heat

As in the 2D model, numerical simulations of the Ham
tonian dynamics have been performed with both Eqs.~3! and
~4!. The outcomes show a cusplike pattern of the spec
heat, whose peak makes possible a better determinatio
the critical temperature. By increasing the lattice dimens
up to N515315315, the cusp becomes more pronounc
at variance with the case of the 2D model. Figure 11 sho
that this occurs at the temperatureTc.2.17.
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3. Vorticity

The definition of the vorticity in the 3D case is not
simple extension of the 2D case. Vortices are always defi
on a plane and, if all the ‘‘spins’’ could freely move in th
three-dimensional space, the concept of vortices would
meaningless. For the 3D planar~anisotropic! model consid-
ered here, vortices can be defined and studied on t
dimensional subspaces of the lattice. The variablesqi , j ,k do
not contain any information about the position of the pla
where the reference direction to measure the anglesqi , j ,k is
assigned. Dynamics is completely independent of t
choice, which has no effect on the Hamiltonian. Moreov
as the Hamiltonian is symmetric with respect to the latt
axes, the three coordinate planes are equivalent. This equ
lence implies that vortices can exist contemporarily on th
orthogonal planes. Though the usual pictorial representa
of a vortex can hardly be maintained, its mathematical d
nition is the same as in the 2D lattice case. Hence, th
vorticity functions exist and their average values—at a giv
temperature—should not differ, which is actually confirm
by numerical simulations.

The vorticity function vs temperature is plotted in Fig. 1
On a lattice of 10310310 spins, the first vortex is observe
at T.0.8. The growth of the average density of vortices
very fast up to the critical temperature, above which satu
tion is reached.

B. Lyapunov exponents and symmetry-breaking
phase transition

A quantitative analysis of the dynamical chaoticity is pr
vided by the temperature dependence of the larg
Lyapunov exponent. Figure 13 shows the results of this co
putation. At low temperatures, in the limit of quasiharmon
oscillators, the scaling law is again found to bel1(T);T2

and at high temperatures the scaling law is againl1(T)
;T21/6, as in the 2D case. In the temperature range inter
diate betweenT.0.8 andTc.2.17, there is a linear growth
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of l1(T). At the critical temperature, the Lyapunov expone
exhibits an angular point. This makes a remarkable diff
ence between this system undergoing a second-order p
transition and its 2D version, undergoing a Kosterli
Thouless transition. In fact, the analysis of the 2D model
shown a mild transition between the different regimes
l1(T) ~inset of Fig. 6!, whereas in the 3D model this trans
tion is sharper~inset of Fig. 13!.

We have also computed the temperature dependenc
the largest Lyapunov exponent of the Markovian rand
processes that replace the true dynamics on the energy
facesSE ~see the Appendix!. The results are shown in Fig
14. The dynamics is considered strongly chaotic in the te
perature range where the patternsl1(T) are the same for
both random and differentiable dynamics, i.e., when diff
entiable dynamics mimics, to some extent, a random proc

FIG. 9. The magnetization vectorM (t) computed at the tem
peratureT52.22 ~slightly higher than the critical value! on lattices
of ~a! N510310310 and~b! N515315315, respectively. The
time intervalDt50.5310421.53104 is the same for both simula
tions.
t
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The dynamics is considered weakly chaotic when the va
l1 resulting from random dynamics is larger than the va
l1 resulting from differentiable dynamics. The transitio
from weak to strong chaos is quite abrupt. Figure 14 sho
that the pattern of the largest Lyapunov exponent compu
by means of the random dynamics reproduces that of the
Lyapunov exponent at temperaturesT>Tc . This means that
the setting in of strong thermodynamical disorder cor

FIG. 10. The dynamical order parameter, defined as the ave
of the modulusuM (t)u along a trajectory, computed on lattices
N510310310 ~full circles! andN515315315 ~open circles!.

FIG. 11. Specific heat at constant volume for the 3D mod
computed by means of Eq.~4! on lattices ofN583838 ~open
triangles!, N510310310 ~open circles!, N512312312 ~open
stars!, andN515315315 ~open squares!. Full circles refer to spe-
cific heat values computed by means of Eq.~3! on a lattice ofN
510310310. The dashed line points out the critical temperatu
Tc.2.17 at which the phase transition occurs.
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PRE 61 5179HAMILTONIAN DYNAMICS AND GEOMETRY OF PHASE . . .
sponds to the setting in of strong dynamical chaos. T
‘‘window’’ of strong chaoticity starts atTc and ends atT
;10. The existence of a second transition from strong
weak chaos is due to the existence, forT→`, of the second
integrable limit ~of free rotators!, whence chaos cannot re
main strong at anyT.Tc .

IV. GEOMETRY OF DYNAMICS
AND PHASE TRANSITIONS

Let us briefly recall that the geometrization of the dyna
ics of N-degrees-of-freedom systems defined by a Lagra
ian L5K2V, in which the kinetic energy is quadratic in th
velocities,K5 1

2 ai j q̇
i q̇ j , stems from the fact that the natur

motions are the extrema of the Hamiltonian action functio
SH5*Ldt, or of the Maupertuis actionSM52*K dt. In fact,
the geodesics of Riemannian and pseudo-Riemannian m

FIG. 12. Vorticity function at different temperatures along
dynamical trajectory on a lattice ofN510310310 sites.

FIG. 13. The largest Lyapunov exponents computed at diffe
temperatures for the 3D model. Numerical results are for lattice
N510310310 ~open circles! andN515315315 ~open stars!. In
the inset, symbols have the same meaning. The dashed line p
out the temperatureTc.2.17 of the phase transition. The solid lin
shows the departure ofl1(T) from quadratic growth.
e
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folds are also the extrema of a functional, the arc lengthl
5*ds, with ds25gi j dqidqj . Hence, a suitable choice of th
metric tensor allows for the identification of the arc leng
with eitherSH or SM , and of the geodesics with the natur
motions of the dynamical system. Starting fromSM , the
‘‘mechanical manifold’’ is the accessible configuration spa
endowed with the Jacobi metric@29#

~gJ! i j 5@E2V~q!#ai j , ~7!

whereV(q) is the potential energy andE is the total energy.
A description of the extrema of Hamilton’s actionSH as
geodesics of a ‘‘mechanical manifold’’ can be obtained u
ing Eisenhart’s metric@30# on an enlarged configuratio
space-time ($q0[t,q1, . . . ,qN% plus one real coordinate
qN11), whose arc length is

ds2522V~$q%!~dq0!21ai j dqidqj12dq0dqN11. ~8!

The manifold has a Lorentzian structure and the dynam
trajectories are those geodesics satisfying the conditionds2

5Cdt2, whereC is a positive constant. In the geometric
framework, the~in!stability of the trajectories is the~in!sta-
bility of the geodesics, and it is completely determined
the curvature properties of the underlying manifold acco
ing to the Jacobi equation@29,31#

“

2j i

ds2
1Ri

jkm

dqj

ds
jk

dqm

ds
50, ~9!

whose solutionj, usually called the Jacobi or geodesic var
tion field, locally measures the distance between nearby g
desics;“/ds stands for the covariant derivative along a ge
desic and Ri

jkm are the components of the Rieman
curvature tensor. Using the Eisenhart metric~8!, the relevant
part of the Jacobi equation~9! is @28#

d2j i

dt2
1Ri

0k0jk50, i 51, . . . ,N ~10!

where the only nonvanishing components of the curvat
tensor areR0i0 j5]2V/]qi]qj . Equation~10! is the tangent
dynamics equation, which is commonly used to meas

nt
of

nts

FIG. 14. The largest Lyapunov exponents computed by me
of the random dynamics algorithm~full circles! are plotted in com-
parison with those computed by means of the standard dyna
~open stars! for a lattice ofN510310310.
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Lyapunov exponents in standard Hamiltonian systems. H
ing recognized its geometric origin, Casettiet al. @28# de-
vised a geometric reasoning to derive from Eq.~10! an ef-
fective scalar stability equation that,independentlyof the
knowledge of dynamical trajectories, provides an aver
measure of their degree of instability. An intermediate s
in this derivation yields

d2j j

dt2
1kR~ t !j j1dK (2)~ t !j j50, ~11!

where kR5KR /N is the Ricci curvature along a geodes
defined as KR5(1/v2)Ri j q̇

i q̇ j , with v25q̇i q̇i and Ri j
5Rk

ik j , anddK (2) is the local deviation of sectional curva
ture from its average value@28#. The sectional curvature i
defined asK (2)5Ri jkl j

i q̇ jjkq̇l /iji2i q̇i2.
Two simplifying assumptions are made:~i! the ambient

manifold isalmost isotropic, i.e., the components of the cu
vature tensor—which for an isotropic manifold~i.e., of con-
stant curvature! are Ri jkm5k0(gikgjm2gimgjk),
k05const—can be approximated byRi jkm'k(t)(gikgjm
2gimgjk) along a generic geodesicg(t); ~ii ! in the large-N
limit, the ‘‘effective curvature’’ k(t) can be modeled by a
Gaussian andd-correlated stochastic process. Hence, one
rives an effective stability equation, independent of the
namics and in the form of a stochastic oscillator equat
@28#,

d2c

dt2
1@k01skh~ t !#c50, ~12!

where c2}uju2. The meank0 and variancesk of k(t) are
given by k05^KR&/N and sk

25Š(KR2^KR&)2
‹/N, respec-

tively, and the averageŝ•& are geometric averages, i.e., i
tegrals computed on the mechanical manifold. These a
ages are directly related to microcanonical averages, as
be seen at the end of Sec. V.h(t) is a Gaussiand-correlated
random process of zero mean and unit variance.

The main source of instability of the solutions of Eq.~12!,
and therefore the main source of Hamiltonian chaos, is p
metric resonance, which is activated by the variations of
Ricci curvature along the geodesics and which takes p
also on positively curved manifolds@32#. The dynamical in-
stability can be enhanced if the geodesics encounter reg
of negative sectional curvatures, such thatkR1dK (2),0, as
is evident from Eq.~11!.

In the case of the Eisenhart metric, it isKR[DV
5( i 51

N (]2V/]qi
2) and K (2)5R0i0 jj

ij j /iji2[(]2V/
]qi]qj )j ij j /iji2. The exponential growth ratel of the
quantityc21ċ2 of the solutions of Eq.~12! is therefore an
estimate of the largest Lyapunov exponent that can be
lytically computed. The final result reads@28#

l5
L

2
2

2k0

3L
, L5S 2sk

2t1A64k0
3

27
14sk

4t2D 1/3

,

~13!

wheret5pAk0/@2Ak0(k01sk)1psk#; in the limit sk /k0

!1 one findsl}sk
2 .
v-

e
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e-
-
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ill

a-
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A. Signatures of phase transitions from geometrization
of dynamics

In the geometric picture, chaos is mainly originated by t
parametric instability activated by the fluctuating curvatu
felt by geodesics, i.e., the fluctuations of the~effective! cur-
vature are the source of the instability of the dynamics.
the other hand, as is witnessed by the derivation of Eq.~12!
and by the equation itself, a statistical-mechanical-like tre
ment of the average degree of chaoticity is made possible
the geometrization of the dynamics. The relevant curvat
properties of the mechanical manifolds are computed, at
formal level, as statistical averages, like other thermo
namic observables. Thus, we can expect that some pre
relationship may exist between geometric, dynamic, a
thermodynamic quantities. Moreover, this implies that ph
transitions should correspond to specific effects in the g
metric observables.

In the particular case of the 2DXY model, the microca-
nonical average kinetic energŷK& and the average Ricc
curvature ^KR& computed with the Eisenhart metric a
linked by the equation

KR5K (
i , j 51

N
]2V

]2qi , j
L

52J (
i , j 51

N

^cos~qi 11,j2qi , j !1cos~qi , j 112qi , j !&

52~J2^V&!, ~14!

so that

H5Ne5^K&1^V&°
^K&
N

5e22J1
1

2

^KR&
N

. ~15!

Since the temperature is defined asT52^K&/N ~with kB
51) and d51 ~because each spin has only one rotatio
degree of freedom!, from Eq. ~3! it follows that

cV5
1

2 S 12
1

2

sk
2/N

T2 D 21

. ~16!

In the special case of theseXY systems, it is possible to
link the specific heat and the Ricci curvature by inserting E
~15! into the usual expression for the specific heat at cons
volume. Thus, one obtains the equation

cV52
1

2N

]^KR&~T!

]T
. ~17!

The appearance of a peak in the specific heat function at
critical temperature has to correspond to a suitable temp
ture dependence of the Ricci curvature.

In the 3D model, the potential energy and the Ric
curvature are proportional, according to (1/N)^V&53
2(1/2N)^KR&.

Another interesting point is the relation between a ge
metric observable and the vorticity function in both mode
As already seen in previous sections, the vorticity function
a useful signature of the dynamical chaoticity of the syste
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From the geometrical point of view, the enhancement of
instability of the dynamics with respect to the paramet
instability due to curvature fluctuations is linked to the pro
ability of obtaining negative sectional curvatures along
geodesics~as discussed for the 1DXY model in Ref.@28#!.
In fact, when vortices are present in the system, there
surely be two neighboring spins with an orientation diffe
ence greater thanp/2, such that, ifi , j and i 11,j are their
coordinates on the lattice, it follows that

qi 11,j2qi , j.
p

2
→cos~qi 11,j2qi , j !,0. ~18!

The sectional curvature relative to the plane defined by
velocity v along a geodesic and a generic vectorj'v is

K (2)5 (
i , j ,k,l 51

N
]2V

]qi , j]qk,l

j i , jjk,l

iji2
. ~19!

For the 2DXY model, it is

K (2)5
J

iji2 (
i , j 51

N

@cos~qi 11,j2qi , j !~j i 11,j2j i , j !2

1cos~qi , j 112qi , j !~j i , j 112j i , j !2#. ~20!

Thus, a large probability of having a negative value of t
cosine of the difference among the directions of two clo
spins corresponds to a larger probability of obtaining ne
tive values of the sectional curvatures along the geodes
here forj the geodesic separation vector of Eq.~10! is cho-
sen.

In the 3D model, the sectional curvature relative to t
plane defined by the velocityv and a generic vectorj'v is

K (2)5
J

iji2 (
i , j ,k51

N

@cos~qi 11,j ,k2qi , j ,k!~j i 11,j ,k2j i , j ,k!2

1cos~qi , j 11,k2qi , j ,k!~j i , j 11,k2j i , j ,k!21cos~qi , j ,k11

2qi , j ,k!~j i , j ,k112j i , j ,k!2# ~21!

and again the probability of finding negative values ofK (2)

along a trajectory is limited to the probability of finding vo
tices.

The mean values of the geometric quantities entering
~12! can be numerically computed by means of Monte Ca
simulations or by means of time averages along the dyna
cal trajectories. In fact, due to the lack of an explicit expr
sion for the canonical partition function of the system, the
averages are not analytically computable. For sufficien
high temperatures, the potential energy becomes neglig
with respect to the kinetic energy, and each spin is free
move independently from the others. Thus, in the limit
high temperatures, one can estimate the configurational
tition function ZC5*2p

p ) idqie
2bV(q) by means of the ex-

pression
e
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ZC5e22bJNE
2p

p

)
i , j 51

N

dqi , j expS bJ (
i , j 51

N

@cos~qi 11,j2qi , j !

1cos~qi , j 112qi , j !# D
;e22bJNE

2p

p

)
i , j 51

N

dui , jdv i , j expS bJ (
i , j 51

N

@cos~ui , j !

1cos~v i , j !# D ~22!

after the introduction ofui , j5qi 11,j2qi , j and v i , j5qi , j 11
2qi , j as independent variables. In this way, some analyt
estimates of the average Ricci curvaturek0(T) and of its rms
fluctuationssk(T) have been obtained for the 2D mod
~Fig. 15!. For temperatures above the temperature of
Kosterlitz-Thouless transition, these estimates are in ag
ment with the numerical computations on aN510310 lat-
tice. It is confirmed that Hamiltonian dynamical simulatio
on rather small lattices are already useful to predict, wit
good approximation, the thermodynamic limit behavior
relevant observables. Moreover, the good quality of the h
temperature estimate gives further information: at the tra
tion temperature, the correlations among the different
grees of freedom are destroyed, confirming the strong ch
ticity of the dynamics.

The same high temperature estimates ofk0(T) andsk(T)
have been performed for the 3D system. In Fig. 16, the
merical determination ofsk(T) shows the appearance of
very pronounced peak at the phase transition point, whic
not predicted by the analytic estimate, whereas the ave
Ricci curvaturek0(T) is in agreement with the analytic va
ues of the high temperature estimate, computed by spin
coupling, above the critical temperature, as in the 2D mod

B. Geometric observables and Lyapunov exponents

We have seen that the largest Lyapunov exponent is
sitive to the phase transition and at the same time we kn
that it is also related to the average curvature propertie

FIG. 15. Time average of Ricci curvature~open circles! and its
rms fluctuations~full circles! at different temperatures computed fo
a lattice ofN540340 sites. Solid lines are the analytic estimat
obtained from a high temperature expansion.
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5182 PRE 61CERRUTI-SOLA, CLEMENTI, AND PETTINI
the ‘‘mechanical manifolds.’’ Thus, the geometric obse
ablesk0(T) andsk(T) considered above can be used to
timate the Lyapunov exponents, as well as to detect
phase transition.

In principle, by means of Eq.~13!, one can evaluate th
largest Lyapunov exponent without any need of dynam
but simply using global geometric quantities of the manifo
associated with the physical system. For 2D and 3DXY
models, fully analytic computations are possible only in t
limiting cases of high and low temperatures. Microcanoni
averages ofk0 andsk at arbitraryT have been numerically
computed through time averages. We can call this hyb
method semianalytic.

In Fig. 17, the results of the semianalytic prediction of t
Lyapunov exponents for the 2D model are plotted vs te
perature and compared with the numerical outcomes of
tangent dynamics. As one can see, the prediction formul
on the basis of Eq.~13! underestimates the numerical valu
given by the tangent dynamics. The semianalytic predict
can be improved by observing that replacement of the s
tional curvature fluctuationdK (2) in Eq. ~11! with a fraction

FIG. 16. Time average of Ricci curvature~open triangles! and
its rms fluctuations~full triangles! computed at different tempera
tures for a lattice ofN510310310. Open circles and full dia-
monds refer to a lattice size ofN515315315. Solid lines are the
analytic estimates in the limit of high temperatures. The dashed
points out the temperatureTc.2.17 of the phase transition.
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of the Ricci curvature@which underlies the derivation of Eq
~12!# underestimates the frequency of occurrence of nega
sectional curvatures, which was already the case for the
XY model@28#. A correction procedure can be implement
by evaluating the probabilityP(T) of obtaining a negative
value of the sectional curvature along a generic traject
and then by operating the substitution

KR~T!→ KR~T!

11P~T!a
. ~23!

The parametera is a free parameter to be empirically es
mated. Its value ranges from 100 to 200, without apprecia
differences in the final result. It contains the nontrivial info
mation that the actual tendency of the trajectories tow
negative sectional curvatures is more marked than predi
by the geometric model based onKR .

The probabilityP(T) is estimated through the occurrenc
along a trajectory of negative values of the sum of the co
ficients that appear in the definition ofK (2) @Eqs. ~20! and
~21!#,

e

FIG. 17. Analytic Lyapunov exponents computed for the 2
model by means of Eq.~13! without correction~dots! and incorpo-
rating the correction that accounts for the probability of obtain
negative sectional curvatures~full squares! for a lattice size ofN
540340 are plotted in comparison with the numerical values
Fig. 6. The dashed lines are the asymptotic behaviors at high
low temperatures in the thermodynamic limit.
P~T!;

E
2p

p

Q„2cos~qk11,l2qk,l !2cos~qk,l 112qk,l !…exp@2bV~q!# )
k,l 51

N

dqk,l

E
2p

p

exp@2bV~q!# )
k,l 51

N

dqk,l

, ~24!
e

i-
averaged over all the sites;k,l P(1, . . . ,N); Q is the step
function. Alternatively, owing to the already remarked re
tion between vorticity and sectional curvatureK (2), P(T)
can be replaced by the average density of vortices,

KR~T!→ KR~T!

11āV~T!
, ~25!
-
whereā is a free parameter. Actually, in the 2D model, th
two corrections, one given by Eq.~23! with the P(T) of Eq.
~24!, the other given by Eq.~25! with the vorticity function
in place ofP(T), convey the same information. The sem
analytic predictions ofl1(T) with correction are reported in
Fig. 17.

In the limits of high and low temperaturesl1(T) can be
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PRE 61 5183HAMILTONIAN DYNAMICS AND GEOMETRY OF PHASE . . .
given the analytic formsl1(T);T21/6 at high temperature
and l1(T);T2 at low temperature. In the former case, t
high temperature approximation~22! is used, and in the latte
case the quasiharmonic oscillator approximation is done.
deviation ofl1(T) from quasiharmonic scaling, starting
T.0.6 and already observed to correspond to the appear
of vortices, finds here a simple explanation through the
ometry of dynamics: vortices are associated with nega
sectional curvatures, enhancing chaos.

On increasing the spatial dimension of the system, it
comes more and more difficult to accurately estimate
probability of obtaining negative sectional curvatures. T
assumption that the occurrence of negative values of the
sine of the difference between the directions of two nea
spins is nearly equal toP(T) is less effective in the 3D
model than in the 2D one. Again, the vorticity function c
be assumed as an estimate ofP(T) @Eq. ~25!#. The quality of
the results has a weak dependence upon the parameta.
The correction remains good, witha belonging to a broad
interval of values~100–200!. In the limits of high and low
temperatures, the model predicts correctly the same sca
laws as in the 2D system.

In Fig. 18 the semianalytic predictions for the Lyapun
exponents, with and without correction, are plotted vs te
perature together with the numerical results of the tang
dynamics. It is noticeable that the prediction of Eq.~13! is
able to give the correct asymptotic behavior of the Lyapun
exponents at low temperatures also, the most difficult par
obtain by means of dynamical simulations.

C. A topological hypothesis

We saw in Fig. 16 that a sharp peak of the Ricci curvat
fluctuationssk(T) is found for the 3D model in correspon
dence with the second-order phase transition, whereas
the 2D model,sk(T) appears regular and in agreement w
the theoretically predicted smooth pattern. On the basis
heuristic arguments, in Refs.@1,14# we suggested that th
peak ofsk observed for the 3DXY model, as well as for 2D
and 3D scalar and vector latticew4 models, might originate

FIG. 18. Analytic Lyapunov exponents computed for the 3
model by means of Eq.~13! without correction~dots! and incorpo-
rating the correction that accounts for the probability of obtain
negative sectional curvatures~full circles! are plotted in comparison
with the numerical values of Fig. 13. The dashed lines are
asymptotic behaviors at high and low temperatures in the ther
dynamic limit.
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in some change of thetopologyof the mechanical manifolds
In fact, in abstract mathematical models consisting of fam
lies of surfaces undergoing a topology change~i.e., a loss of
diffeomorphicity among them!, at some critical value of a
parameter labeling the members of the family, we have
tually observed the appearance of cusps ofsK at the transi-
tion point between two subfamilies of surfaces of differe
topology,K being the Gauss curvature.

Actually, for the mean-fieldXY model, where bothsk(T)
andl1(T) have theoretically been shown to lose analytic
at the phase transition point, direct evidence of a ‘‘specia
change of the topology of equipotential hypersurfaces
configuration space has been given@33#. Other indirect and
direct evidence of the actual involvement of topology in t
deep origin of phase transitions has recently been gi
@34,35# for the latticew4 model. In the following section we
consider the extension of this topological point of view abo
phase transitions from equipotential hypersurfaces of c
figuration space to constant energy hypersurfaces of ph
space.

V. PHASE SPACE GEOMETRY AND THERMODYNAMICS

In the preceding section we used some elements of int
sic differential geometry of submanifolds of configuratio
space to describe the average degree of dynamical instab
~measured by the largest Lyapunov exponent!. In the present
section we are interested in the relationship between the
trinsic geometry of the constant energy hypersurfacesSE
and thermodynamics.

Hereafter, phase space is considered as an e
dimensional subsetG of R2N and the hypersurfacesSE
5$(p1 , . . . ,pN ,q1 , . . . ,qN)PRuH(p1 , . . . ,pN ,q1 , . . . ,qN)
5E% are manifolds that can be equipped with the stand
Riemannian metric induced fromR2N. If, for example, a sur-
face is parametrically defined through the equationsxi

5xi(z1, . . . ,zk), i 51, . . . ,2N, then the metricgi j inducedon
the surface is given by gi j (z

1, . . . ,zk)5(n51
2N (]xn/

]zi)(]xn/]zj ). The geodesic flow associated with the met
induced onSE from R2N has nothing to do with the Hamil
tonian flow that belongs toSE . Nevertheless, an intrinsic
Riemannian metricgS of phase spaceG exists, such that the
geodesic flow ofgS , restricted toSE , coincides with the
Hamiltonian flow (gS is the so called Sasaki lift to the tan
gent bundle of configuration space of the Jacobi metricgJ
that we mentioned in Sec. IV!.

The link between extrinsic geometry ofSE and thermo-
dynamics is established through the microcanonical defi
tion of entropy,

S5kB ln E
SE

ds

i“Hi , ~26!

where ds5Adet(g)dx1•••dx2N21 is the invariant volume
element ofSE,R2N, g is the metric induced fromR2N, and
x1 , . . . ,x2N21 are the coordinates onSE .

Let us briefly recall some necessary definitions and c
cepts that are needed in the study of hypersurfaces of Eu
ean spaces.
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A standard way to investigate the geometry of a hypers
face Sm is to study the way in which it curves around
Rm11: this is measured by the way the normal directi
changes as we move from point to point on the surface.
rate of change of the normal directionN at a pointxPS
is described by the shape operator Lx(v)5
2“vN52(“N1•v, . . . ,“Nm11•v), where v is a tangent
vector atx and“v is the directional derivative of the un
normalN. As Lx is an operator of the tangent space atx into
itself, there are m independent eigenvalues@36#
k1(x), . . . ,km(x), which are called the principal curvature
of S at x. Their product is theGauss-Kronecker curvature,
KG(x)5) i 51

m k i(x)5det(Lx), and their sum is the so-calle
mean curvature, M1(x)5(1/m)( i 51

m k i(x). The quadratic
form Lx(v)•v, associated with the shape operator at a po
x, is called the second fundamental form ofS at x.

It can be shown@31# that the mean curvature of the e
ergy hypersurfaces is given by

M1~x!52
1

2N21
“•S “H~x!

i“H~x!i D , ~27!

where “H(x)/i“H(x)i is the unit normal toSE at a
given point x5(p1 , . . . ,pN ,q1 , . . . ,qN), and “

5(]/]p1 , . . . ,]/]qN), whence we get the explicit expres
sion

~2N21!M152
1

i“Hi FN1(
i

S ]2V

]qi
2 D G1

1

i“Hi3

3F(
i

pi
21(

i,j
S ]2V

]qi]qj
D S ]V

]qi
D S ]V

]qj
D G ,

~28!

wherei,j are multi-indices according to the number of spat
dimensions.

The link between geometry and physics stems from
microcanonical definition of the temperature,

1

T
5

]S

]E
5

1

Vn~E!

dVn~E!

dE
, ~29!

where we used Eq.~26! with kB51, n52N21, and
Vn(E)5*SE

ds/i“Hi . From the formula@37#

dk

dEk S E
SE

ads D ~E8!5E
SE8

Ak~a!ds, ~30!

where a is an integrable function andA is the operator
A(a)5(“/i“Hi)•(a•“H/i“Hi), it is possible to work
out the result
r-

e

t

l

e

1

T
5

1

Vn~E!

dVn~E!

dE

5
1

Vn
E

SE

ds

i“Hi S 2
M1

!

i“Hi 2
nH

i“Hi2D
.

1

Vn
E

SE

ds

i“Hi
M1

!

i“Hi , ~31!

where M1
!5“•(“H/i“Hi) is directly proportional to the

mean curvature~27!. In the last term of Eq.~31! we have
neglected a contribution that vanishes asO(1/N). Equation
~31! provides the fundamental link between extrinsic geo
etry and thermodynamics@38#. In fact, the microcanonica
average ofM1

!/i“Hi , which is a quantity tightly related to
the mean curvature ofSE , gives the inverse of the tempera
ture, whence other important thermodynamic observab
can be derived. For example, the constant volume spe
heat

1

CV
5

]T~E!

]E
, ~32!

using Eq.~29!, yields

CV52S ]S

]ED 2S ]2S

]E2D 21

, ~33!

becoming at largeN

CV52K M1
!

i“Hi L
MC

2 F 1

Vn

d

dEESE

ds

i“Hi S M1
!

i“Hi 1R~E! D
2K M1

!

i“Hi L
MC

2 G21

, ~34!

where the subscript MC stands for microcanonical avera
and R(E) stands for the quantities of orderO(1/N) ne-
glected in the last term of Eq.~29! ~a priori, its derivative
can be non-negligible and has to be taken into accou!.
Equation~34! highlights a more elaborate link between g
ometry and thermodynamics: the specific heat depends u
the microcanonical average ofM1

!/i“Hi and upon the en-
ergy variation rate of the surface integral of this quantity.

Remarkably, the relationship between curvature prop
ties of the constant energy surfacesSE and thermodynamic
observables given by Eqs.~29! and ~34! can be extended to
embrace also a deeper and very interesting relationship
tween the thermodynamics andtopologyof the constant en-
ergy surfaces. Such a relationship can be discovered thro
reasoning which, though approximate, is highly nontrivi
for it makes use of a deep theorem due to Chern and La
@39#. As i“Hi5$( i pi

21@“ iV(q)#2%1/2 is a positive quantity
increasing with the energy, we can write

1

T
5

1

Vn

dVn

dE
.

1

Vn
E

SE

ds

i“Hi
M1

!

i“Hi 5D~E!
1

Vn
E

SE

dsM1 ,

~35!
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where we have introduced the factor functionD(E) in order
to extract the total mean curvature*SE

dsM1 ; D(E) has
been numerically found to be smooth and very close
^1/i“Hi2&MC ~see Sec. V A!. Then, recalling the expressio
of a multinomial expansion

~x11•••1xn!n5 (
$ni %, ( nk5n

n!

n1! •••nn!
x1

n1
•••xn

nn , ~36!

and identifying thexi with the principal curvatureski , one
obtains

M1
n5n!)

i 51

n

ki1R5n!K1R, ~37!

whereK5) iki is the Gauss-Kronecker curvature andR is
the sum~36! without the term with the largest coefficien
(nk51, ;k). Usingn! .nne2nA2pn,

M1
n.nne2nA4pNK1R ~38!

is obtained. The above mentioned theorem of Chern
Lashof states that

E
SE

uKuds>Vol@S1
n#(

i 50

n

bi~SE!, ~39!

i.e., the total absolute Gauss-Kronecker curvature of a hy
surface is related to the sum of all its Betti numbersbi(SE).
The Betti numbers arediffeomorphism invariantsof funda-
mental topological meaning@40#; therefore their sum is also
a topologic invariant. Vol@S1

n# is the volume of a hyper-
sphere of unit radius. Combining Eqs.~38! and ~39! and
integrating onSE , we obtain

E
SE

uM1
nuds.nne2nA2pnE

SE

uKuds1E
SE

uRuds

>A(
i 50

n

bi~SE!1R~E!, ~40!

with the shorthand notationA5nne2nVol(S1
n) and R

5*SE
uRuds.

Now, with the aid of the inequality *i f i1/ndm
>i* f dmi1/n, we can write

E
SE

uM1uds5E
SE

uM1
nu1/nds>U E

SE

M1
ndsU1/n

. ~41!

If M1>0 everywhere on SE , then u*SE
M1

ndsu1/n

5(*SE
uM1

nuds)1/n, whence, on the hypothesis thatM1>0

largely prevails@41#, u*SE
M1

ndsu1/n;(*SE
uM1

nuds)1/n. Un-

der the same assumption,*SE
M1ds;*SE

uM1uds and there-
fore
o

d

r-

E
SE

M1ds;E
SE

uM1
nu1/nds

>U E
SE

M1
ndsU1/n

;S E
SE

uM1
nuds D 1/n

>FA(
i 50

n

bi~SE!1R~E!G1/n

. ~42!

Finally,

1

T~E!
5

1

Vn

dVn

dE

.K M1
!

i“Hi L
MC

5
1

Vn
E

SE

ds

i“Hi
M1

!

i“Hi 5D~E!
1

Vn
E

SE

dsM1

>
D~E!

Vn
S A(

i 50

n

bi~SE!1R~E!D 1/n

. ~43!

Equation ~43! has the remarkable property of relating th
microcanonical definition of temperature of Eq.~35! with a
topologic invariantof SE . The Betti numbers can be expo
nentially large withN @for example, in the case ofN-tori TN,
they arebk5(k

N)#, so that the quantity ((bk)
1/N can con-

verge, at arbitrarily largeN, to a nontrivial limit ~i.e., differ-
ent from 1!. Thus, even though the energy dependence oR
is unknown, the energy variation of(bi(SE) must be
mirrored—at any arbitraryN—by the energy variation of the
temperature. By considering Eq.~34! in the light of Eq.~43!,
we can expect that some suitably abrupt and major chang
the topology of theSE can be reflected in the appearance
a peak of the specific heat, as a consequence of the as
ated energy dependence of(bk(SE) and of its derivative
with respect toE. In other words, we see that a link mu
exist between thermodynamical phase transitions and s
able topology changes of the constant energy submanif
of the phase space of microscopic variables. The argum
given above, though still in a rough formulation, provide
attempt to make a connection between the topological
pects of themicrocanonicaldescription of phase transition
and the already proposedtopological hypothesisabout topol-
ogy changes in configuration space and phase transit
@1,14,33–35#.

Direct support for the topological hypothesis has be
given by the analytic study of a mean-fieldXY model @33#
and by the numerical computation of the Euler characteri
x of the equipotential hypersurfacesSv of the configuration
space in a 2D latticew4 model@35#. The Euler characteristic
is the alternate sum of all the Betti numbers of a manifold,
it is another topological invariant, but it identically vanish
for odd dimensional manifolds, likeSE . In Ref. @35#, x(Sv)
neatly reveals the symmetry-breaking phase transi
through a sudden change of its rate of variation with
potential energy densityv. A sudden ‘‘second-order’’ varia-
tion of the topology ofSv appears in both Refs.@33,35# as
the prerequisite for the appearance of a phase transi
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These results strengthen the arguments given in the pre
section about the role of the topology of the constant ene
hypersurfaces. In fact, the largerN, the smaller are the rela
tive fluctuations^d2V&1/2/^V& and ^d2K&1/2/^K& of the po-
tential and kinetic energies respectively. At very largeN, the
product manifoldSv

N213St
N21 , with v[^V& and t[^K&,

v1t5E, is a good model manifold to represent the part
SE that is overwhelmingly sampled by the dynamics and t
therefore constitutes the effective support of the micro
nonical measure onSE . The kinetic energy submanifold
St

N215$(p1 , . . . ,pN)PRNu( i 51
N 1

2 pi
25t% are hyperspheres.

In other words, at very largeN the microcanonical mea
sure mathematically extends over the whole energy sur
but, as far as physics is concerned, a non-negligible co
bution to the microcanonical measure is in practice giv
only by a small subset of the energy surface. This subset
be reasonably modeled by the product manifoldSv

N21

3St
N21 , because the total kinetic and total potent

energies—having arbitrarily small fluctuations, provided th
N is large enough—can be considered almost constant. T
sinceSt

N21 at anyt is always a hypersphere, a change in t
topology ofSv

N21 directly entails a change of the topology
Sv

N213St
N21 , that is, of the effective model manifold for th

subset ofSE where the dynamics mainly ‘‘lives’’ at a given
energyE.

At small N, the model with a single product manifold
no longer good and should be replaced by the noncount
union øvPI,RSv

N213SE2v
N21 , with v assuming all the pos

sible values in a real intervalI. From this fact the smoothing
of the energy dependence of thermodynamic variables
lows. Nevertheless, the geometric and topologic signals
the phase transition can remain much sharper than the
modynamic signals at smallN also (,100), as is shown by
the 2D latticew4 model @34,35#.

Finally, let us comment on the relationship between
trinsic geometry, in terms of which we discussed the geo
etrization of the dynamics, and extrinsic geometry, dealt w
in the present section. The most direct and intriguing link
established by the expression for microcanonical average
generic observables of the kindA(q), with q
5(q1 , . . . ,qN),

^A&MC5
1

V2N~E!
E

H(p,q)<E
dNpdNqA~q!

5
1

Vol~ME!
E

V(q)<E
dNq@E2V~q!#N/2A~q!,

~44!

whereME5$qPRNuV(q)<E%. Equation~44! is obtained by
means of a Laplace transform method@25#; it is remarkable
that @E2V(q)#N[det(gJ), where gJ is the Jacobi metric
whose geodesic flow coincides with Newtonian dynam
~see Sec. IV!, thereforedNq@E2V(q)#N/2[dNqAdet(gJ) is
the invariant Riemannian volume element of (ME ,gJ). Thus,

1

Vol~ME!
E

V(q)<E
dNq@E2V~q!#N/2A~q!

[
1

Vol~ME!
E

ME

dNqAdet~gJ!A~q!, ~45!
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which means that the microcanonical averages^A(q)&MC can
be expressed as Riemannian integrals on the mecha
manifold (ME ,gJ).

In particular, this also applies to the microcanonical de
nition of entropy,

S5kB ln E
H(p,q)<E

dNpdNq5kB ln E
0

E

dE8E
SE8

ds

i“Hi ,

~46!

which is alternative to that given in Eq.~26!, though equiva-
lent to it in the large-N limit. We have

S5kB lnS 1

CG~N/211!
E

V(q)<E
dNq@E2V~q!#N/2D

[kB ln E
ME

dNqAdet~gJ!1const , ~47!

where the last term gives the entropy as the logarithm of
Riemannian volume of the manifold.

The topology changes of the surfacesSv
N21 , which are to

be associated with phase transitions, will also deeply af
the geometry of the mechanical manifolds (ME ,gJ) and
(M3R2,gE) and, consequently, they will affect the avera
instability properties of their geodesic flows. In fact, Eq.~13!
links some curvature averages of these manifolds with
numeric value of the largest Lyapunov exponent. Loos
speaking, major topology changes ofSv

N21 will affect micro-
canonical averages of geometric quantities compu
through Eq.~44!, and likewise entropy, computed throug
Eq. ~47!.

Thus, the characteristic temperature patterns displaye
the largest Lyapunov exponent at a second-order phase
sition point—in the present paper reported for the 3DXY
model, in Ref.@14# reported for latticew4 models—appear as
reasonable consequences of the deep variations of the to
ogy of the equipotential hypersurfaces of configurati
space.

We notice that topology seems to provide a comm
ground to the roots of microscopic dynamics and of therm
dynamics and, notably, it can account for major qualitat
changes simultaneously occurring in both dynamics and t
modynamics when a phase transition is present.

A. Some preliminary numerical computations

Let us briefly report on some preliminary numerical com
putations concerning the extrinsic geometry of the hypers
facesSE in the case of the 3D XY model.

The first point about extrinsic geometry that we nume
cally addressed was to check whether the inverse of the t
perature, which appears in Eq.~35!, can be reasonably fac
torized into the product of a smooth ‘‘deformation factor
D(E) and of the total mean curvature*SE

M1ds. To this
purpose, the two independently computed quantit
^1/i“Hi2&MC and

D~E!5@*SE
~ds/i“Hi !~M1

!/i“Hi !#/@*SE
dsM1#
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are compared in Fig. 19, showing that actua
*SE

(ds/i“Hi)(M1
!/i“Hi).^1/i“Hi2&MC*SE

dsM1. In

other words,D(E).^1/i“Hi2&MC and no ‘‘singular’’ fea-
ture in its energy pattern seems to exist, which suggests
*SE

dsM1 has to convey all the information relevant to th
detection of the phase transition. There is no reason to th
that the validity of the factorization given in Eq.~35! is lim-
ited to the special case of the XY model.

The other point that we tackled concerns an indirect qu
tification of how a phase space trajectory curves around
knots on theSE to which it belongs. We can expect that th
way in which a hypersurfaceSE is ‘‘filled’’ by a phase space
trajectory existing on it will be affected by the geometry a
topology ofSE . In particular, we computed the normalize
autocorrelation function of the time seriesM1@x(t)# of the
mean curvature at the points ofSE visited by the phase spac
trajectory, that is, the quantity

G~t!5^dM1~ t1t!dM1~ t !& t , ~48!

where dM1(t)5M1(t)2^M1(t8)& t8 is the fluctuation with
respect to the average@the ‘‘process’’ M1(t) is supposed
stationary#. Our aim was to highlight the extrinsic geometri
dynamical counterpart of a symmetry-breaking phase tra
tion.

The practical computation ofG(t) proceeds by working
out the Fourier power spectrumuM̃1(v)u2 of M1@x(t)#, ob-
tained by averaging 15 spectra computed by a fast Fou
transform algorithm with a mesh of 215 points and a sam
pling time Dt50.1. Some typical results forG(t), obtained
at different temperatures, are reported in Fig. 20. The p
ternsG(t) display a first regime of very fast decay, which
not surprising because of the chaoticity of the trajectorie
any energy, followed by a longer tail of slower decay. A
autocorrelation timetcorr can be defined through the firs
intercept ofG(t) with an almost-zero level (G50.01). In
Fig. 21 we report the values oftcorr so defined vs tempera
ture. Corresponding with the phase transition~whose critical
temperature is marked by a vertical dotted line!, tcorr
changes its temperature dependence: on lowering the

FIG. 19. The deformation factor D(E)5@*SE
(ds/

i“Hi)(M1
!/i“Hi)#/@*SE

dsM1# of Eq. ~35! ~open circles! is plot-
ted vs energy densityE/N and compared to the quantity^1/i“Hi2&
~open triangles!. N510310310.
at

k

-
d

i-

er

t-

at

m-

perature, below the transitiontcorr(T) rapidly increases,
whereas it mildly decreases above the transition. BelowT
.0.9, where the vortices disappear, the autocorrelation fu
tions of M1 look quite different and it seems no longer po
sible to coherently define a correlation time. This result h
an intuitive meaning and confirms that the phase transi
corresponds to a change in the microscopic dynamics
already signaled by the largest Lyapunov exponent; ho
ever, notice that the correlation timestcorr(T) are much
longer than the inverse values of the correspondingl1(T).
Qualitatively,l1(T) andtcorr

21 (T) look similar; however, the
two functions are not simply related.

VI. DISCUSSION AND PERSPECTIVES

The microscopic Hamiltonian dynamics of the classic
Heisenberg XY model in two and three spatial dimensio

FIG. 20. The normalized autocorrelation functionsG(t) are
plotted vs timet for a lattice ofN510310310 and for four dif-
ferent values of the temperature~from top to bottom: T
50.49,1.28,1.75,2.16).

FIG. 21. Autocorrelation timestcorr are plotted vs temperatur
T. The vertical dashed line points out the temperatureTc.2.17 at
which the phase transition occurs.
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5188 PRE 61CERRUTI-SOLA, CLEMENTI, AND PETTINI
has been numerically investigated. This was possible a
the addition to the Heisenberg potentials of a standard~qua-
dratic! kinetic energy term. Special emphasis was given
the study of the dynamical counterpart of phase transitio
detected through the time averages of conventional ther
dynamic observables, and to the mathematical concepts
are brought about by Hamiltonian dynamics.

The motivations of the present study are given in the
troduction. Let us now summarize what are the outcome
our investigations and comment about their meaning. Th
are three main topics, tightly related one to the other:~1! the
phenomenological description of phase transitions thro
the natural, microscopic dynamics in place of the us
Monte Carlo stochastic dynamics;~2! the investigation, in
the presence of phase transitions, of certain aspects o
~intrinsic! geometry of the mechanical manifolds where t
natural dynamics is represented as a geodesic flow; and~3!
the discussion of the relationship between the~extrinsic! ge-
ometry of constant energy hypersurfaces of phase space
thermodynamics.

About the first point, we have found that microscop
Hamiltonian dynamics very clearly evidences the presenc
a second-order phase transition through the time average
conventional thermodynamic observables. Moreover, the
miliar sharpening effects, at increasingN, of the specific heat
peak and of the order parameter bifurcation are obser
The evolution of the order parameter with respect to
physical time~instead of the fictitious Monte Carlo time! is
also accessible, showing the appearance of Goldstone m
and that, in the presence of a second-order phase trans
there is a clear tendency to the freezing of transverse fl
tuations of the order parameter whenN is increased. The
‘‘freezing’’ is observed together with a reduction of the lo
gitudinal fluctuations, i.e., the rotation of the magnetizat
vector slows down, preparing for the breaking of theO(2)
symmetry atN→`. At variance, when a Kosterlitz-Thoules
transition is present, on increasingN the magnetization vec
tor has a faster rotation and a smaller norm, preparing for
absence of symmetry breaking in theN→` limit, as ex-
pected.

Remarkably, to detect phase transitions, microsco
Hamiltonian dynamics provides us with additional obse
ables of purely dynamical nature, i.e., without statisti
counterpart: the Lyapunov exponents. Similarly to what
and other authors have already reported for other models~see
the Introduction!, in the case of the 3DXY model also a
characteristic temperature pattern of the largest Lyapu
exponent shows up in the presence of the second-order p
transition, signaled by a ‘‘cuspy’’ point. By comparing th
patternsl1(T) given by Hamiltonian dynamics and by
suitably defined random dynamics, we suggest that the t
sition between thermodynamically ordered and disorde
phases has its microscopic dynamical counterpart in a t
sition between weak and strong chaos. Thougha posteriori
physically reasonable, this result is far from obvious, b
cause the largest Lyapunov exponent measures the ave
local instability of the dynamics, whicha priori has little to
do with acollective, and therefore global, phenomenon su
as a phase transition. The effort to understand the reaso
such a sensitivity ofl1 to a second-order phase transitio
er
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and to other kinds of transitions, as mentioned in the Int
duction, is far reaching.

Here we arrive at the second point listed above. In
framework of a Riemannian geometrization of Hamiltoni
dynamics, the largest Lyapunov exponent is related to
curvature properties of suitable submanifolds of configu
tion space whose geodesics coincide with the natural
tions. In the mathematical light of this geometrization of t
dynamics, and after the numerical evidence of a sharp p
of curvature fluctuations at the phase transition point,
particular pattern ofl1(T) is due to some major chang
occurring to the geometry of mechanical manifolds at
phase transition. Elsewhere, we have conjectured that ind
some major change in thetopology of configuration space
submanifolds should be the very source of the mentio
major change of geometry.

Thus, we have made a first attempt to provide an anal
argument supporting this topological hypothesis~the third
point of the above list!. This is based on the appearance o
nontrivial relationship between the geometry of constant
ergy hypersurfaces of phase space and their topology and
microcanonical definition of thermodynamics. Even still in
preliminary formulation, our reasoning already seems to
dicate the topology of energy hypersurfaces as the best
didate to explain the underlying origin of the dynamical s
nature of phase transitions detected throughl1(T).

The circumstance, mentioned in the preceding section
the persistence at smallN of geometric and topologic signal
of the phase transition that are much sharper than the t
modynamic signals is of prospective interest for the study
phase transition phenomena in finite, small systems, a t
of growing interest thanks to the modern development
mainly experimental—in the physics of nuclear, atomic, a
molecular clusters, of conformational phase transitions in
mopolymers and proteins, of mesoscopic systems, and
soft-matter systems of biological interest. In fact, some
ambiguous information for small systems—even about
existence itself of a phase transition—could be better
tained by means of concepts and mathematical tools outl
here and in the quoted papers. Here we also join the v
interesting line of thought of Gross and collaborators@5,42#
about the microcanonical description of phase transitions
finite systems.

Let us conclude with a speculative comment about
other possible direction of investigation related to this sig
ture of phase transitions through Lyapunov exponents. I
field-theoretic framework, based on a path integral formu
tion of classical mechanics@43–45#, Lyapunov exponents
are defined through the expectation values of suitable op
tors. In the field-theoretic framework, ergodicity breakin
appears to be related to a supersymmetry breaking@43#, and
Lyapunov exponents are related to mathematical objects
have many analogies with topological concepts@45#.

The mathematical concepts and methods that the Ha
tonian dynamical approach brings about could be useful a
in the study of more ‘‘exotic’’ transition phenomena tha
those tackled in the present work. As well as the above m
tioned soft-matter systems, this could be the case of tra
tion phenomena occurring in amorphous and disordered
terials.
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APPENDIX

Let us briefly explain how a random Markovian dynami
is constructed on a given constant energy hypersurfac
phase space. The goal is to compare the energy depend
of the largest Lyapunov exponent computed for the Ham
tonian flow and for a suitable random walk, respective
One has to devise an algorithm to generate a random wal
a given energy hypersurface such that, once the time inte
Dt separating two successive steps is assigned, the ave
increments of the coordinates are equal to the average in
ments of the same coordinates for the differentiable dyn
ics integrated with a time stepDt. In other words, the ran
dom walk has to roughly mimic the differentiable dynami
with the exception of its possible time correlations.

One starts with a random initial configuration of the c
ordinatesqi , i 51,2, . . . ,N, uniformly distributed in the in-
terval @0,2p#, and with a random Gaussian-distribute
choice of the coordinatespi . The random pseudotrajectory
generated according to the simple scheme

~qi !(k11)Dt°~qi !kDt1aqGi ,kDt,
~A1!

~pi !(k11)Dt°~pi !kDt1apGi ,kDt,

where Dt is the time interval associated with one st
k°k11 in the Markovian chain,Gi ,k are Gaussian-
distributed random numbers with zero expectation value
unit variance, and the parametersaq and ap are the vari-
ances of the processes (qi)k and (pi)k . These variances ar
functions of the energy per degree of freedom«. They have
to be set equal to the numerically computed average in
ments of the coordinates obtained along the differentia
trajectories integrated with the same time stepDt, that is,

aq~e!5K S 1

N (
i 51

N
@qi~ t1Dt !2qi~ t !#2

~Dt !2 D 1/2L
t

;K S 1

N (
i 51

N

pi
2D 1/2L

t

;AT,

ap~e!5K S 1

N (
i 51

N
@pi~ t1Dt !2pi~ t !#2

~Dt !2 D 1/2L
t

;K S 1

N (
i 51

N

ṗi
2D 1/2L

t

, ~A2!
i,
t

-

of
nce
l-
.
on
al

age
re-
-

d

e-
le

whereT is the temperature. Then, in order to make minimu
the energy fluctuations around any given value of the to
energy, a criterion to accept or reject a new step along
Markovian chain has to be assigned. A similar problem h
been considered by Creutz, who developed a Monte C
microcanonical algorithm@46#, where a ‘‘Maxwellian de-
mon’’ gives a part of its energy to the system to let it mo
to a new configuration, or gains energy from the system
the new proposed configuration produces an energy low
ing. If the demon does not have enough energy to allow
energy increasing update of the coordinates, no coordin
change is performed. In this way, the total energy rema
almost constant with only small fluctuations. As usual
Monte Carlo simulations, it is appropriate to fix the para
eters so that the acceptance rate of the proposed updat
the configurations is in the range 30%–60%. A reliabil
check of the random walk so defined, and of the adequac
the phase space sampling through the number of s
adopted in each run, is obtained by computing the avera
of typical thermodynamic observables of known temperat
dependences.

An improvement to the above described ‘‘demon’’ alg
rithm has been obtained through a simple reprojection onSE
of the updated configurations@29#; the coordinates generate
by means of Eq.~A1! are corrected with the formulas

qi~kDt !°qi~kDt !1F ~]H/]qi !DE

(
j 51

N

@pj
21~]H/]qj !

2#G
xR(kDt)

,

~A3!

pi~kDt !°pi~kDt !2F piDE

(
j 51

N

@pj
21~]H/]qj !

2#G
xR(kDt)

,

whereDE is the difference between the energy of the n
configuration and the reference energy, andxR(kDt) denotes
the random phase space trajectory. At each assigned en
the computation of the largest Lyapunov exponentl1

R of this
random trajectory is obtained by means of the standard d
nition

l1
R5 lim

n→`

1

nDt (
k51

n

ln
iz„~k11!Dt…i

iz~kDt !i , ~A4!

wherez(t)[„j(t),j̇(t)… is given by the discretized versio
of the tangent dynamics,

j i„~k11!Dt…22j i~kDt !1j i„~k21!Dt…

Dt2

1(
j 51

N S ]2V

]qi]qj
D

xR(kDt)

j j~kDt !50. ~A5!

For wide variations of the parameters (Dt and acceptance
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rate!, the resulting values ofl1
R are in very good agreemen

Moreover, the algorithm is sufficiently stable and the fin
value ofl1

R is independent of the choice of the initial cond
tion.

A more refined algorithm could be implemented
constructing a random Markovian processq(tk)
[@q1(tk), . . . ,qN(tk)# performing an importance samplin
of the measuredm5@E2V(q)#N/221dq in configuration
space. In fact, similarly to what is reported in Eq.~44!,
v

,

re

s.

d

m

A

l
one has @25# *H(p,q)5EdNpdNq5const3*V(q)<EdNq@E
2V(q)#N/221. A random process obtained by sampling su
a measure—with the additional property of a relation b
tween the average increment and the physical time stepDt as
discussed above—would enter into Eq.~A5! to yield l1

R .
However, this would result in much heavier numerical co
putations~with some additional technical difficulty at larg
N) which was not worthwhile in view of the principal aim
of the present work.
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